

Interpretation a IN-based algorithm for full-event filteri d interpretation at the LHCb trigge **1 University and INFN Milano-Bicocca, Italy Interpretation at the Manual Barcía Pardiñas GNN-based algorithm for full-event filtering** and interpretation at the Jonas Eschle3, Simone Meloni1, Nicola Serra3 **1 University and INFN Milano-Bicocca, Italy Interpretation (DFF)** projection (DFF) projection (DFF) projection (DFF) projection (DFF) projection (DFF) projection (DFF) \mathbf{F} Jonas Eschle3, Simone Meloni1, Nicola Serra3 and interpretation at the LHCb trigger **GNN-based algorithm for full-event filtering**

,

J**ulián García Pardiñasi**, Indrea Mauri², Mar a Calvil, Jonas Eschle3, Simone Meloni1, Nicola Serra3 **3 Università degli Studi di Milano-Bicocca, Italy Toward Start And The Contration**
 $\frac{1}{2}$ and $\frac{1}{2}$ is $\frac{1}{2}$ if $\frac{1}{2}$ is $\frac{1}{2}$ in $\frac{1}{2}$ is $\frac{1}{2}$ if $\frac{1}{2}$ if $\frac{1}{2}$ is $\frac{1}{2}$ if $\frac{1}{2}$ if $\frac{1}{2}$ if $\frac{1}{2}$ if $\frac{1}{2}$ if \frac \mathbf{L}_1 is \mathbf{L}_2 in \mathbf{L}_1 in \mathbf{L}_2 is \mathbf{L}_2 in \mathbf{L}_2 in \mathbf{L}_2 is \mathbf{L}_2 **1 Universität Zürich, Switzerland 3 Università degli Studi di Milano-Bicocca, Italy Towards Care a Parameter** μ mere in the interpretation. r**ía Pardiñas**t, indroa Mairi2 Mar a Calvil,
Laibh, Shrine (2001) Laibhead (2001) $\frac{1}{2}$

1 University and INFN Milano-Bicocca, Italy
 algorithmental Properties Intervention

all this formulation is strike than the summer all the summersity of Zürich. Switzerland $2 \cdot 1 + i \div$, The $1 + i \div$ and $i \in \mathbb{R}$ 3 University of Zürich, Switzerland

5th Inter-experiment Machine Learning Workshop 13/05/22

Introduction

LHCb detector: forward spectrometer studying decays of beauty and charm hadrons.

Upcoming LHC Run3 @LHCb:

- Increase in instantaneous luminosity by a factor 5.
- Hardware part of the trigger removed.
	- ► Fully-software trigger. **►** Higher efficiencies.

Huge challenge of combinatorics for the trigger.

 $\overline{\psi}$

► Much bigger challenge for the Upgrade 2!

Julián García Pardiñas DFEI for LHCb 13/05/22

1

Event complexity and evolution of the trigger paradigm

Evolution of average quantities per event $(*)$:

During **Run1 and Run2**, a small fraction of the events had a signal (either b- or c-hadron)

Upgrade 1 (Runs 3-4): about 1 charm hadron per event.

Upgrade 2 (Runs 5-6): about 1 beauty hadron every other event, several charm hadrons per event.

(*) Numbers obtained from a private simulation based on PYTHIA, described later in this talk.

Event complexity and evolution of the trigger paradigm

Evolution of average quantities per event $(*)$:

900

Example interacting? Number of c-hadrons $\overline{1}$ 600 Run 2 Upgrade I Upgrade II **To:** (almost) all of the events are interesting ... but they have too much information! <u>Upser the base done</u> several crucial steps to set the basis for a other event, several charm hadrons per event. Limited trigger bandwidth [LHCB-TDR-018]: Bandwidth [MB/s] \propto Trigger output rate [kHz] \times Average event size [kB] From: which events are interesting? We can save a lot of information for many of them! **Which parts of each event are interesting?** This problem had already been anticipated in 2014 [LHCb-PUB-2014-027], and LHCb has done several crucial steps to set the basis for an eventual solution.

(*) Numbers obtained from a private simulation based on PYTHIA, described later in this talk.

Julián García Pardiñas DFEI for LHCb 13/05/22

5

Signal-based trigger vs Full Event Interpretation (FEI)

Signal based **FEI**

The current LHCb trigger is an OR between many decay-mode selection lines.

Since Run2, to reduce the event size, some lines store only parts of the event which **are related** to the specific signal. **JINST 14** (2019) 04, P04006]

E.g.: store the signal $+$ the tracks in the same primary vertex (PV).

New proposal: try to **reconstruct the b**and c- hadron decay chains in the event, in a hierarchical-clustering manner (cluster \rightarrow unstable particle), and discard the rest.

Advantages:

- Exploit extra correlations between objects in the event.

- **Bandwidth oriented**: focus on storing as much "useful" information as possible.

- Case of several signals per event as an integral part of the approach.

- Establishment of a basis for an expanded functionality of the trigger: inclusive selections, study of anomalous events ...

Signal-based trigger vs Full Event Interpretation (FEI)

Connection with other experiments

From a physics perspective, the closest example from a different experiment is the **FEI algorithm** developed for **Belle II** [Comput.Softw.Big Sci. 3 (2019) 1, 6].

Reconstruction of the tag-side B^0/B^{\pm} decay chain in a hierarchical way, using a **fixed** collection of possible decays, with independent classifiers for each of them.

Recently started exploring an alternative **DL-based inclusive approach with GNNs** [\[BELLE2-MTHESIS-2020-006\].](https://docs.belle2.org/record/2122/)

Our project also has strong technical similarities with many developments done at **CMS**. They have investigated the usage of GNNs in online computing for pileup mitigation [\[arXiv:](https://arxiv.org/abs/1810.07988) 1810.07988] and to develop a modernized version of the **Particle Flow** algorithm [Eur.Phys.J.C [81 \(2021\) 5, 381\]](https://arxiv.org/abs/2101.08578).

They have also done the first FPGA-compatible implementation of a GNN [Frontiers in Big Data 3 (2021) 44], to run the algorithms online fitting their computing requirements.

Differences between Belle II and LHCb

► DFEI: Deep-learning based FEI for LHCb.

General description of our algorithm

Input: reconstructed stable particles (charged tracks and neutral clusters).

Basic deep-learning units: Graph Neural Networks (GNN). \rightarrow We are using the graph_nets package from DeepMind [arXiv:1806.01261].

Algorithm structure: chain of modules with increasing "granularity", each of them filtering away part of the event.

Current prototype: use only charged stable particles and focus on the reconstruction of **beauty-hadron decays**.

DFEI algorithm for b-hadrons, charged particles

Julián García Pardiñas DFEI for LHCb 13/05/22

7

DFEI algorithm for b-hadrons, charged particles

1. Node pruning Kinematics&topology GNN

Green: particles from a b-hadron Red: particles from the rest of the event

1) Node pruning

DFEI algorithm for b-hadrons, charged particles

Green: particles from a b-hadron Red: particles from the rest of the event

Julián García Pardiñas DFEI for LHCb 13/05/22

}**Prefiltering**

2) Edge pruning

DFEI algorithm for b-hadrons, charged particles

Green: particles from a b-hadron Red: particles from the rest of the event

The information of the **decay tree** can be **fully encoded** using an integer for each edge.

At Belle II, the LCA matrix reconstruction relies on the effect of kinematic constraints (momentum conservation, invariant masses, …).

Since the physics case of LHCb is much richer, but we can profit from a very good vertex resolution, **we are focusing on a simpler "topological" reconstruction,** where the **target decay chain is modified as follows**:

 - Very short lived resonances are "merged" with their ancestor.

 - Resonances without enough charged descendants to allow a vertex reconstruction are "merged" with their ancestor.

The information of the decay tree can be fully encoded using an integer for each edge.

Example target transformation from a normal ancestor chain into a "topological" ancestor chain:

Training dataset: emulating Run3 conditions

Particle collision&decay

The training and performance studies are currently done using **PYTHIA**, with the following configuration:

- Proton-proton collisions at 13 TeV.
- Average number of collisions per event: 7.6.
- Selecting **events with at least one b-hadron produced (inclusive decay)**.

"Detection and reconstruction"

We require all the tracks and the b-hadrons to be **inside the LHCb geometrical acceptance**.

In addition, we **emulate the reconstruction of the following quantities**, using publicly available expectations for the LHCb performance in Run3 (see backup):

- **Origin point of the tracks** (first measurement in the Vertex Locator).
- Three-momentum of the tracks.
- - **Position of the primary vertices**.

Training conditions

Performance: signal vs. background

(Signal ≡ having a b-hadron ancestor)

Performance after the "topological" LCA metric reconstruction, evaluated in a batch of ~6000 events.

Performance: reduction of event size

Performance after the "topological" LCA metric reconstruction, evaluated in a batch of ~6000 events.

Performance: reconstruction of decay chains

Perfect reconstruction ≡ removal of all the bkg. particles + selection of all the signal particles + inference of all the ancestors + perfect connections of all the final-state particles and ancestors. → Extremely challenging ... but possible!

Example of a perfect reconstruction achieved by **our algorithm:**

kX (key X): unique identifier for each stable particle in the event.

reco_cX: reconstructed ancestor (or cluster, c) X

(NOTE: truth-level background particles not shown, for simplicity).

Performance: reconstruction of decay chains

Perfect reconstruction ≡ removal of all the bkg. particles + selection of all the signal particles + inference of all the ancestors + perfect connections of all the final-state particles and ancestors. → Extremely challenging ... but possible!

Reconstructed trees in event kX (key X): unique identifier for each stable **With the current implementation** (further optimizations particle in the ongoing), the fraction of perfectly-reconstructed events is event. of the order of **few per cent**. **Example of a reco_cX**: **perfect** reconstructed Detailed studies on the performance as a function of **reconstruction** ancestor (or different variables and for specific decay modes will follow. cluster, c) X achieved by **our algorithm:** Note: even with an approximate reconstruction, the algorithm can be very powerful for background reduction! (NOTE: truth-level $CZ: D \sim 0$ **K641:pi+** background particles $CL:D+$ Kb35:e-K637:pinot shown, for simplicity). k652:pik643:pi+ k644:pi+ k645:pi $k650:K+$

Performance: timing

Simplistic study (no parallelisation, no hardware accelerators^{*}, algorithm to be further optimised), to understand which are the slowest parts of the algorithm and how they scale with the total number of particles per event.

The slowest part is the node pruning, which also has the strongest dependency on the number of particles. \rightarrow Many possible ways of optimisation.

The processing time of the subsequent algorithms is quite stable regarding changes in event complexity.

(*) Study done on a darwin-x86 64 architecture with a 2.8 GHz Intel Core i7 processor.

Our algorithm

Problem and chosen approach

> **Summary and outlook**

> > **Expansion to neutral particles**

Training of the algorithm

Performance studies

Expansion to neutral particles (very preliminary)

Goal: add the **photons and neutral pions** (more than half of the number of charged particles).

Technical issue #1: much harder to pre-select the edges. \rightarrow An input charged+neutral graph would be enormous.

► Our approach: do an independent node pruning for charged and neutral, then combine them for the subsequent steps.

Technical issue #2: the "topological" LCA reconstruction does not allow to process neutrals (no vertex information).

 \rightarrow We will add them in future developments, once our hierarchical reconstruction becomes more general.

Our algorithm

Problem and chosen approach

> **Summary and outlook**

> > **Expansion to neutral particles**

Training of the algorithm

Performance studies

Summary

Up to now, LHCb is using a signal-based trigger

- \rightarrow Offline-quality reconstruction at trigger level.
- \rightarrow Expanded with functionality for a selective persistence of information in the event.

Profiting from the past trigger developments, and aiming at solving the future huge combinatorics challenges from the increased multiplicity, we propose a new approach: a Deep-learning based Full Event Interpretation for LHCb.

► Goal: automatic and accurate identification and reconstruction of all the heavyhadron decay chains per event.

We have developed the first prototype of the algorithm, focused on charged final-state particles and (inclusive) b-hadron decays.

► Very promising performance in realistic conditions!

Outlook

Many future studies branching out from this work!

- **► Optimise the current algorithm**, both in terms of performance and time. **►** Explore different ways of **accelerating GNNs**.
- **►** Study the **performance on specific key channels** for LHCb.
- **►** Prepare (parts of) the current algorithm to be able to run on the **RTA system of LHCb**.
- \blacktriangleright Expand from the "topological" LCA to the full LCA (exploit invariant mass information, etc.).
- \rightarrow Add the neutrals to the LCA-reconstruction step.
- \rightarrow Add the final-state-particle PID information, and develop a way to label the PID of the reconstructed ancestors.
	- **►** Combination of the GNNs with **Reinforcement Learning** algorithms (basing on preliminary studies we have done).
- \rightarrow Adapt the algorithm to reconstruct c-hadrons, instead of b-hadrons.
- **► Study data/MC differences** in performance.

Backup slides

Further bibliography

The LHCb Upgrades for Run3 and Run4: https://indico.cern.ch/event/868940/contributions/ 3813743/attachments/2081057/3495477/200725 ICHEP LHCbUpgrades v3.pdf

Performance estimates for Run3 conditions, used in our private simulation:

- Smearing of the true PV positions: https://indico.cern.ch/event/831165/contributions/ [3717129/attachments/2022791/3382986/ctd_2020_freiss.pdf](https://indico.cern.ch/event/831165/contributions/3717129/attachments/2022791/3382986/ctd_2020_freiss.pdf)

- Smearing of different reconstructed quantities: https://twiki.cern.ch/twiki/bin/view/LHCb/ [ConferencePlots](https://twiki.cern.ch/twiki/bin/view/LHCb/ConferencePlots) and Computer Physics Communications 265, 108026 (2021).

- Geometry of the Vertex Locator: https://cds.cern.ch/record/2147229/files/10.1016 j.nima. [2016.04.077.pdf](https://cds.cern.ch/record/2147229/files/10.1016_j.nima.2016.04.077.pdf)

Cut-based edge pruning

Training of the "topological" LCA reconstruction

Training split in 6 steps, each of them doing 4000 iterations in batches of 128 events.

No signs of overtraining (training and test curves always ~overlapping).