
Neural Network
Learning and
Optimization

(NNLO)

IML Workshop
May 2022

Irena Veljanović, Vladimir Lončar,
Maurizio Pierini, Jean-Roch Vlimant

Contents
Resources that our group uses

Motivation

What is the NNLO library

NNLO workflows

Unified distributed workflow

Simplified hyperparameter optimization

Model compression

Deployment on diverse platforms

Summary

2

Resources we use in our group
Local private mPP machines with GPUs

● The machines owned by mPP group, for the
purposes of ML, but the single machines is
not a way to go.

● It requires time to set it up and maintain it.

Swan

● More than a ML training platform.
● It is a data analysis facility, it has ROOT

integration.
● Main focus is on physics analysis.
● For long running just on CPUs.
● Certainly the most user-friendly entry point.
● Interesting for interactive work.

3

Kubeflow service ml.cern.ch

● Interactive training environment with
workflows and jupyter notebook service.

● Very limited number of GPUs at the
moment.

● In the future more GPUs.
● Idea interesting and promising.

Resources we use in our group
lxplus-gpu.cern.ch

● Most falimilar solution
● User is connecting through SSH connection
● User can take the software stack from cvmf, or

use his own environments stored on eos or
afs

● Tesla T4 GPUs
● No access to multiple GPUs at once (problem

for advanced work with big models).
● No guarantee of exclusive access to a node.
● Some issue with Singularity containers.
● Limited memory usage (job killed when

threshold exceeded)
● Need of some ssh-keep-alive setup, that has

to be custom installed (e.g. screen) 4

Clusters outside of CERN - Flatiron

● Flatiron is a cluster at Simons Foundation.
● It has hundreds of very powerful NVIDIA V100

and A100 GPUs
● Based on SLURM, user submits a job and

specify the time limit and it runs the training
● Also possible to request an interactive node

for development purposes where user can
login with SSH.

● Gives exclusive GPU access.
● It has very high amount of RAM and has very

fast access to the disk (without errors).
● No need to care for tokens to run trainings

longer that 24h (as is needed for Kerberos)

Motivation
Noticed issues:

● Deep learning becoming popular among LHC experiments, more data, longer training.
● Training and optimization need to be faster.
● Young scientist and new machine learning users face difficulties in upscaling their ML code to

be run in distributed way.
● It is also not easy to switch between different kinds of resources.

Potential solution:

● Develop a library which will easen the workflows.

5

What is the NNLO library?
NNLO is a library for distributed training and optimization.

NNLO - Neural Network Learning and Optimization

Main goals:

1. Unified distributed deep learning workflow
2. Simplified hyperparameter optimization
3. Model compression
4. Deployment on diverse platforms

This project is funded by Knowledge Transfer department (KT).

It is a project under development.
6

NNLO workflows

7

Model

N
N

LO
 A

PI Model compression

- Quantization
- Pruning
- Knowledge

distillation

Architecture search

- Bayesian
optimization

- Hyperband

Training

- Distributed training
- Single node and

multi-node

H
W

Ex
po

rt

ContainersJob scripts

Cloud On-premise

Unified distributed workflow
NNLO aims to have the same API for TensorFlow and PyTorch

The API takes model builder function, dataset, desired loss function, optimizer, distributed
strategy.

The user has to make minimal changes, sometimes only 3 lines are needed to run distributed
training using the NNLO library.

Definition of the distribution strategy:

● Single GPU
● Single node with multiple GPUs
● Multiple nodes with single/multiple GPUs each

Optional dataset management

● Helps with optimal access pattern in distributed environment.

8

Simplified hyperparameter optimization
The idea is to integrate well known frameworks (Optuna, Keras tuner, …), in order to use them
easily through NNLO library.

For example, an architecture search can be done in this way, searching for optimal numbers
of layers, neurons etc.

By hyperparameter optimization, the user can get optimal values for desired
hyperparameters according to the criteria which is set. The criteria can be a loss function or
some of the desired metrics.

9

Search
space

Search
strategy

Performance
estimation
strategy

Pick architecture from
search space

Return performance
estimate

https://optuna.readthedocs.io/en/latest/index.html
https://keras.io/keras_tuner/

Model compression
The goal is to support model compression through different methods:

● Quantization
○ Reducing the precision of the weights, biases, and activations such that they consume less

memory.
● Pruning

○ Involves removing weights from a trained model.
● Knowledge distillation

○ The process of transferring the knowledge from a large model to a smaller one.
○ While large models have higher knowledge capacity than small models, this capacity might not

be fully utilized.
○ Distillation in Keras: https://keras.io/examples/vision/knowledge_distillation/

Potentially in the future also train hls4ml optimized compressed models.

10

https://keras.io/examples/vision/knowledge_distillation/
https://fastmachinelearning.org/hls4ml/

Deployment on diverse platforms

11

NNLO

Singularity Kubeflowconda env /
docker

Local resources HPC Cloud

Local resources

● Should imply SSH
connections and running
on bare metal.

HPC

● Should imply the use of
job scheduler.

● On bare metal or via
singularity.

Cloud

● Should imply SSH
connection or have the
Kubeflow service set up
there.

Local resources workflow
Anything reachable through SSH with full control

● Laptops, workstations, local machines (mPP planets), Caltech cluster,...

12

GPU resource

connect

nnlo.Runner.run()

Local resources workflow
By using NNLO library, user can easily scale up
the training from single GPU, to multiple GPUs by
adding only few lines of code.

NNLO is based on the concepts of:

● Driver
○ Defines what should be done.

● Runner
○ Does the job on one of the supported

platforms.

In order to run the code in distributed manner, it
is crucial to instantiate driver and runner classes.

The example for MobileNetV2 and CIFAR10:
13

def model_builder():

return MobileNetV2(input_shape=(32, 32, 3),

alpha=1.0, weights=None, classes=10)

data_generator = Cifar10InMemoryDataSetGenerator(32)

driver = TensorflowTrainingDriver(

'nnlo_mobile_net',

model_builder,

data_generator,

loss='categorical_crossentropy',

optimizer='adam',

dist_trategy=SingleNodeStrategy())

runner = TensorflowTrainingRunner(driver)

runner.run()

Local resources workflow - example
batch_size = 32

epochs = 3

(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()

y_train = y_train / 127.5 - 1.0

y_train = tf.keras.utils.to_categorical(y_train, 10)

train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(batch_size)

y_test = y_test / 127.5 - 1.0

y_test = tf.keras.utils.to_categorical(y_test, 10)

validation_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(batch_size)

strategy = tf.distribute.MirroredStrategy()

with strategy.scope():

 model = MobileNetV2(input_shape=(32, 32, 3), alpha=1.0, weights=None, classes=10)

 model.compile(

 optimizer='adam',

 loss='categorical_crossentropy',

 metrics=None)

 model.fit(

 train_dataset,

 batch_size=batch_size,

 epochs=epochs,

 validation_data=validation_dataset,

 callbacks=None)

14

def model_builder():

return MobileNetV2(input_shape=(32, 32, 3), alpha=1.0, weights=None, classes=10)

data_generator = Cifar10InMemoryDataSetGenerator(32)

driver = TensorflowTrainingDriver('nnlo_mobile_net',

model_builder,

Data_generator,

loss='categorical_crossentropy',

optimizer='adam',

dist_trategy=SingleNodeStrategy())

runner = TensorflowTrainingRunner(driver)

runner.run()

Without NNLO: With NNLO:

Remote resources workflow - Kubeflow

Remote execution on KubeFlow premises at CERN from local
machine

15

kfp.Client

KubeFlow
ml.cern.ch

kfp.Client.create_run_
from_pipeline_package

CERN
network

runner.run()

https://ml.docs.cern.ch/

Remote resources - Kubeflow - ml.cern.ch
NNLO supports running a training as a pipeline on
Kubeflow platform ml.cern.ch developed by IT
department.

It can be run by adding few lines of code:

16

data_generator = JetDataSetGenerator()

driver = TensorflowTrainingDriver('nnlo_conv_net', model_builder, data_generator,

 loss='categorical_crossentropy',

optimizer='adam',

dist_trategy=SingleNodeStrategy())

exporter = CERNKubeflowExporter()

runner = exporter.export(driver, "nnlo-pipeline", "irena-veljanovic")

runner.run()

from nnlo.export.kubeflow_exporter import CERNKubeflowExporter

from nnlo.train import TensorflowTrainingDriver

from nnlo.train import SingleNodeStrategy

https://ml.docs.cern.ch/

Remote resources workflow - HPC
Interactive cloud/HPC workflow

● Prepare the training/hyperparameter optimization locally
● Then schedule a job interactively and observe its state

17

GPU resource

sbatch x

nnlo.Job.submit()

move/deploy

generate

nnlo.Job.query()

Remote resources workflow - HPC
Depending on the security policy, sometimes it may not be possible to use
TensorFlow’s multi-node strategy on HPCs, therefore we would like to include
inter-node communication through MPI protocol which Horovod supports.

Horovod is a distributed deep learning framework for TensorFlow, Keras,
PyTorch. It was originally developed by Uber to make distributed deep
learning fast and easy to use. It brings model trainings time down from days
and weeks to hours and minutes.

We applied for the HPC resources through Prace and we hope we will be able
to start using them soon for the purpose of the development of the library.

18

https://horovod.ai/
https://prace-ri.eu/

Summary

19

Model

N
N

LO
 A

PI

Model
compression

- Quantization
- Pruning
- Knowledge

distillation

Architecture
search

- Bayesian
optimization

- Hyperband

Training

- Distributed
training

- Single node
and multi-node

H
W

Ex
po

rt ContainersJob scripts

Cloud On-premise

Main goals for the NNLO library:
Different workflows:

● Distributed training
● Hyperparameter optimization
● Model compression

Supports both models developed
using:

● TensorFlow
● PyTorch

Running the code on different
hardware resources:

● Locally
● Cloud
● HPC

Thank you!

irena.veljanovic@cern.ch

20

