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TOMOGRAPHY VIA MULTIPLE SCATTERING

• Consider a volume with unknown 
composition

• E.g. Shipping container, archeological site, 
nuclear waste, industrial machinery

• Want to infer properties of the volume:
• E.g. build a 3D map of elemental 

composition

• Cosmic muons scattered by volume 
according to radiation-length (X0 [m]) of 
elements in material

• Measure muons above and below volume

• Kinematic changes provide info on 
material composition
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High X0 = low 
scattering

Low X0 = high 
scattering

Detector

Detector

High X0 
material

Low X0 
material

X0 = average distance between 
scatterings



VOXELISED VOLUMES

• Typically, we can split the unknown volume 
into voxels

• We can then observe the scatterings of 
many muons through the volume

• Our aim is then to estimate the X0 of 
every voxel
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INFERENCE METHODS

• We can fit straight-line trajectories to 
muon hits

• These provide the initial & final muon 
kinematics

• Point of Closest Approach (POCA) 
method assigns the entire scattering to a 
single voxel

• The X0 can be computed by inverting 
analytic scattering models (e.g. PDG)

• The voxel is chosen by extrapolating the 
trajectories inside the volume and finding 
their point of closest approach
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https://pdg.lbl.gov/2019/reviews/rpp2018-rev-passage-particles-matter.pdf


POCA BIAS

• We know, though, that the muon 
scattering results from multiple 
interactions throughout the volume

• Assigning the whole scattering to a single 
point inherently leads to underestimating 
the X0

• Can deep-learning approaches be used for 
inference?

• Could do UNet-style image segmentation, 
or bin/cluster hits into MVA

• But these methods lose out on low level 
information
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• Block of lead 
(X0=0.005612m)

• Surrounded by 
beryllium 
(X0=0.3528m)

• Predictions highly 
biased to 
underestimate X0• Lead block clearly 
visible

• but high z uncertainty 
in scatter location 
causes ‘ghosting’ 
above and below 

https://iopscience.iop.org/article/10.1088/1748-0221/16/05/P05007


PROBLEM BREAKDOWN

• We have a population of muons, 𝜇, and 
know their start & end trajectories

• We can also compute high-level features, 
e.g. delta angles, POCA X0, etc.

• We have a set of voxels, V, know their 
(xyz) positions, and want to know their 
X0s

• The final muon-trajectories have a 
stochastic dependence on the voxels

• But each muon only passes through a few 
voxels

• How can we map 𝜇→X0?
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𝛥𝜃x 𝛥𝜃y 𝛥x 𝛥y X0 X Y Z
2.4e-03 2.4e-03 1.3e-03 1.4e-03 2.6e-01 -1.9e-02

 
-3.49-02 1.0e-01

7.3e-04 4.9e-03 -8.8e-04 1.3e-04 1.2e-01 3.0e-02 -2.4e-02 1.4e-01

... ... ... ... ... ... ... ...

X Y Z X0

0 0 0 ?

0.1 0 0 ?

... ... ... ?

X0 ≅ f(𝜇,V)



GRAPH MOTIVATION

• Consider each voxel as a node in a graph
• Our task would be to predict the X0 of 

each node
• The muons provide features for each 

voxel
• But how can we best express the muons 

as voxel features?
• None of the muons pass through all 

voxels:
• The muon representation should be 

tailored to each voxel
• We only have start & end features for the 

muons:
• Voxels need to be aware of other 

voxels, in order to properly 
“transport” the muons through the 
volume
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Voxel 0 has features 
dependent on some of 
the muons and the 
some of the other 
voxels. From this we 
predict its X0

We need an architecture 
that can automatically learn 
to connect nodes

0



GRAVNET

• Quasim, Kieseler, Iiyama, & Pierini, 2019

• Rewires graphs by learning node 
coordinates S in latent space and selecting 
k nearest-neighbours

• Computes new features per node, which 
depend on:

• The node’s original features and only the 
features of the k-nearest nodes

• A potential term V(djk) allows the 
neighbour features to be augmented 
according to separation distance in 
clustering space S

• GravNet fulfills our requirement 
information sharing along learnable 
connections 
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https://arxiv.org/abs/1902.07987


MUON REPRESENTATION

• Aim: learn a dedicated representation of 
the muons for each voxel

• Each voxel has its own graph in which 
muons are the nodes

• Augment the muons by adding the xyz 
position of the voxel

• These can be combined with muon 
features (entry/exit points, POCA 
locations, and angles)

• Use GravNet to pass information between 
muons

• “Selects” muons relevant to the given 
voxel

• Finally, aggregate the graph by taking 
permutation-equivariant operations 
(mean, max, etc.)

• NB: can also include extra DNNs and 
self-attention in the aggregation
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(voxels, muons, muon features + voxel features)

GravNet

(voxels, muons, new features)

Aggregate over muons

(voxels, muon representation)

GravNet is broadcast over 
the voxels “batch” dimension 

(muons, muon feats), (voxels, voxel feats)



VOXEL REPRESENTATION

• Aim: learn a dedicated representation of 
the voxels for each voxel

• Each voxel has its own graph in which 
voxels are the nodes

• Allows voxels to adjust their muon 
representations to account for muon 
transport through the volume

• Again, augment each voxel’s muon 
representation by adding the xyz distances 
of the voxels to the voxel in question

• Again, use GravNet and aggregation to 
arrive at a voxel representation per voxel
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(voxels, voxels, muon rep. + voxel features)

GravNet

(voxels, voxels, new features)

Aggregate over voxels

(voxels, voxel representation)

(voxels, muon rep.)

GravNet is broadcast over 
the voxels “batch” dimension 



REPRESENTATION SUMMARY
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1. Pass many 
muons through 
volume

2. For every voxel, 
construct a latent 
representation of the 
relevant muons.

3. Every voxel then refines 
its representation based 
on the surrounding 
voxels.



VOLUME PREDICTION

• At this point, we have a representation per 
voxel.

• We can transform these into X0 
predictions (class/value) with a DNN

• But sometimes we don’t need to produce 
a 3D image

• Consider scanning a shipping container 
for dangerous materials (e.g. uranium): we 
are more interested in determining 
presence rather than location - binary 
classification

• We can easily aggregate over the voxels to 
produce a volume representation.

• This can then be further transformed into 
the appropriate prediction shape
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(voxels, voxel representation)

DNN

(voxels, voxel class)

DNN

(Volume class)

Aggregate over voxels

(volume representation)



TESTING: BINARY CLASSIFICATION
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Beryllium volume (1m3)
may contain lead block 
(random size and position)
Is a block of lead present?

GNN archives excellent 
classification power, even 
for small blocks

WORK IN PROGRESS!



TESTING: MULTICLASS CLASSIFICATION
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Volume (1m3) of random material, contains 
a block of a different random material 
(random size and position)
What material is the block made from?

Performance again increases with 
block size
(Results average over 
block/volume material pairs)

Better performance for 
denser materials, presumably 
due to more scattering.
(Results average over volume 
material and block size)

We could also treat this as an X0 regression…

WORK IN PROGRESS!



TESTING: IMAGING
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Volume (1m3) of random material, contains 
a block of a different random material 
(random size and position)
What material is each voxel made from?

Performance again increases with 
block size. Block/volume material 
pairs)

Improved symmetry for 
confusion matrix.
(Results average over volume 
material and block size)

We could also treat this as an X0 regression…
Results shown are computed using only voxels inside the 
blocks. Predictions for volume voxels is much easier.

WORK IN PROGRESS!



IMAGING BEHAVIOUR EXAMPLES
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Good position & 
materials, but 
slightly too large

Good position 
but wrong 
materials

Predicts > 2 
materials

Predicts irregular 
block shapes

Low z-position 
accuracy

Both imply that the GNN isn’t exploiting too 
much knowledge about the training scenario

Perfect 
prediction

WORK IN PROGRESS!



PRELIMINARY ABLATION

• Shared muon representation:
• Only compute one muon representation 

and pass it to all voxels
• Slight, but consistent, drop in performance 

= useful for voxels need to have their own 
dedicated reps.

• No voxel representation:
• Voxel predictions are based solely on 

their muon representations
• No mechanism for voxels to refine their 

features based on other voxels
• Generally slightly lower performance = 

voxel refinement somewhat useful, but 
could be improved

• NB: No attempt to recover parameter 
count to match default model.
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WORK IN PROGRESS!



SUMMARY

• Demonstrated that the use of problem-specific intermediate 
latent-representations can allow us to fully exploit low-level information
• Such a representation can be easily adapted to suit a variety of end-goals

• In muon-tomography, this allows us to achieve promising performance on 
several examples
• The 2-level graph also allows us to include high-level features at both the muon and 

voxel level; the GNN is fully complementary to existing approaches
• It also allows us to differentiably compute class probabilities rather than relying on 

X0 float predictions or task-specific summary statistics
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THE WIDER PICTURE

• Simulation for this work used the MODE 
TomOpt package

• Being developed to provide differential 
optimisation of muon tomography 
detectors

• See Section 4.3 of the MODE whitepaper 
for more details arXiv:2203.13818

• Contributors:
• Giles Strong, Tommaso Dorigo, 

Andrea Giammanco, Pietro Vischia, Jan 
Kieseler, Maxime Lagrange, Federico 
Nardi, Haitham Zaraket, Max 
Lamparth, Federica Fanzago, Oleg 
Savchenko, Nitesh Sharma, &  Anna 
Bordignon.

• Interested in helping? 
giles.strong@outlook.com
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Aim is to learn optimal detector layouts 
given a task and budget.
Inference algorithms must be both 
differentiable and detector-agnostic…

https://mode-collaboration.github.io/
https://arxiv.org/abs/2203.13818
mailto:giles.strong@outlook.com


BACKUPS
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GRAPH NEURAL NETWORKS

• Graph = collection of nodes with features 
connected along edges

• Nodes have no assumed ordering

• Potential tasks:
• Predict target features per node
• Predict whether edges exist
• Predict target features of entire graph

• Simple approach: apply same DNN to each 
node to learn target features

• Compute average of features over nodes 
for graph-level targets

• Better approach: DNN also takes into 
account connected nodes

• GNNs have a message passing mechanism 
to allow node-level predictions to be 
influenced by other nodes
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N0: F0 = 1, F1 = 0.2, ...

N1: F0 = 3, F1 = -0.7, ...

N0: F0 = 1, F1 = 0.2, …
Target0 = ??

N1: F0 = 3, F1 = -0.7, …
Target0 = ??

G0: Target0 = ??


