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2Marginal Inference

Foreman-Mackey, D. (2016). corner.py: Scatterplot matrices in Python. The 
Journal of Open Source Software, 1(2), 24. https://doi.org/10.21105/joss.00024

The posterior quantifies the uncertainty 
about parameters 𝜃 given data 𝑥.

𝑝 𝜃 𝑥) =
𝑝 𝑥 𝜃)

𝑝(𝑥)
𝑝(𝜃)



3Marginal Inference

Foreman-Mackey, D. (2016). corner.py: Scatterplot matrices in Python. The 
Journal of Open Source Software, 1(2), 24. https://doi.org/10.21105/joss.00024

Marginalizations
of the full 3-
dimensional 
joint posterior!

Also see: Justin Alsing and Benjamin Wandelt. Nuisance hardened data 
compression for fast likelihood-free inference. arXiv:1903.01473

Niall Jeffrey and Benjamin Wandelt. Solving high-dimensional 
parameter inference: . arXiv: 2011.05991

𝑝 𝜗 𝑥) =
∫ 𝑝 𝑥 𝜗, 𝜂) 𝑝 𝜗, 𝜂 𝑑𝜂

𝑝 𝑥
=
𝑝 𝑥 𝜗)

𝑝 𝑥
𝑝 𝜗

Marginal Inference: Estimate the 
marginal posteriors of interest directly.

https://arxiv.org/abs/1903.01473
https://arxiv.org/abs/1903.01473
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Neural Ratio Estimation
We train a classifier and extract a likelihood-to-evidence ratio…

The classifier distinguishes between samples drawn jointly vs marginally

𝑝 𝑥, 𝜃 𝑦) = ቊ
𝑝 𝑥, 𝜃 𝑖𝑓 𝑦 = 1

𝑝 𝑥 𝑝 𝜃 𝑖𝑓 𝑦 = 0
.

Let 𝑟 𝑥, 𝜃 =
𝑝 𝑥,𝜃 𝑦=1)

𝑝 𝑥,𝜃 𝑦=0)
=

𝑝(𝑥, 𝜃)

𝑝 𝑥 𝑝(𝜃)
=

𝑝 𝑥 𝜃)

𝑝 𝑥
i.e., the likelihood to evidence ratio.

That means 𝑝 𝑦 = 1 𝑥, 𝜃) =
𝑟 𝑥, 𝜃

𝑟 𝑥, 𝜃 + 1
= 𝜎 log 𝑟 𝑥, 𝜃 . 

The posterior for the “switching” variable y is

𝑝 𝑦 = 1 𝑥, 𝜃) =
𝑝 𝑥, 𝜃 𝑦 = 1)

𝑝 𝑥, 𝜃 𝑦 = 0) + 𝑝 𝑥, 𝜃 𝑦 = 1)
=

𝑝 𝑥, 𝜃

𝑝 𝑥 𝑝 𝜃 + 𝑝 𝑥, 𝜃
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10-dimensional, 210 = 1024 modes, 10,000 simulations. 

Compare marginal estimation (MNRE) to joint estimations (NRE, SNRE).

Eggbox: Is marginal ratio estimation simulation efficient?

Ours
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Sidenote: what are amortized vs. sequential methods?

Jan-Matthis Lueckmann, et. al. Benchmarking Simulation-Based Inference.
https://arxiv.org/abs/2101.04653

https://github.com/mackelab/sbi

https://arxiv.org/abs/2101.04653
https://github.com/mackelab/sbi
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• Estimates marginal posteriors directly…

• Extends Neural Ratio Estimation, which estimates the likelihood-to-

evidence ratio 
𝑝 𝑥 𝜃)

𝑝(𝑥)
by training a classifier.

• Truncates uninformative regions where 𝑝 𝜃 𝑥𝑜) ≈ 0…

• Enables consistency checks through local amortization…

Hermans and Delaunoy, et. al. 2021. Averting A Crisis 
In Simulation-Based Inference. arXiv: 2110.06581.

Hermans, et. al. 2019. Likelihood-free MCMC 
with Amortized Approximate Ratio Estimators. 
arXiv: 1903.04057.

https://arxiv.org/abs/2110.06581
https://arxiv.org/abs/1903.04057


8Truncated Bayesian Inference

Posteriors can be quite narrow 
compared to priors.

Tejero-Cantero, A., Boelts, J., Deistler, M., Lueckmann, J.-M., Durkan, C., Gonçalves, P. J., 
Greenberg, D. S., & Macke, J. H. (2020). sbi: A toolkit for simulation-based inference. Journal 
of Open Source Software, 5(52), 2505. https://doi.org/10.21105/joss.02505

Truncated Inference: Sample only 
regions near the posterior mass.

“Ideal” truncated region? 

Γ ≔ {𝜃 ∈ supp p 𝜃 | p 𝜃 𝑥𝑜 > 𝜖

Γ𝑟𝑒𝑐,𝑖 ≔ 𝜃𝑖 ∈ supp p𝑖 𝜃𝑖 Ƹ𝑝 𝜃𝑖 𝑥𝑜 > ǁ𝜖 𝑖

Our component-wise marginal estimate.



9Sketch of truncation scheme
1. Sample from the joint 𝒙, 𝜽 ∼ 𝑝 𝑥 𝜃) 𝑝(𝜃).

2. Learn all component-wise likelihood-to-evidence ratios 
𝑝 𝑥 𝜗𝑖)

𝑝(𝑥)
.

3. Truncate prior 𝑝 𝜃 → 𝑝Γ𝑟𝑒𝑐 𝜃 with Γ𝑟𝑒𝑐,𝑖 = 𝜃𝑖 ∈ supp p𝑖 𝜃𝑖 Ƹ𝑝 𝜃𝑖 𝑥𝑜 > ǁ𝜖 𝑖.

4. Simulate more data 𝒙, 𝜽 ∼ 𝑝 𝑥 𝜃) 𝑝Γ𝑟𝑒𝑐(𝜃).

5. Repeat 2-4 until prior volume stabilizes. 

6. Return truncated region Γ𝑟𝑒𝑐, samples within, learn (marginal) posterior.

Truncation Visualization
In the image, 𝑝𝑛𝑒𝑤 𝜃 is not normalized



10Torus: Is truncation with marginals efficient?
Marginal Truncated Marginal

Classifier 2-
Sample Test 
(C2ST) 

Kullback-Leibler
(KL) divergence.

Prior volume 
reduction
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Torus: How did we select our cutoff?

• Grid search on 10 values of the 
truncation cutoff 𝜖.

• 𝜖0 = 10−6 conservatively minimized 
C2ST / simulation.

• Truncates a gaussian posterior at 

± −2 ln 𝜖0 𝜎 ≈ 5.26 𝜎. Truncation 
affects only very-low probability 
credibility contours!
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Empirical tests with local amortization

How do we know we got the inference right 
(when we don’t have the truth)?

Check 𝑝 𝜃 = 𝐸𝑥∼𝑝 𝑥 [ 𝑝 𝜃 𝑥 ]!



13Empirical tests with local amortization
Simulation-based inference constrains parameters 
within compact regions using credible intervals.

(Local) amortization enables us to check whether nominal credibility is calibrated.
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Plot style and benchmark from:
Jan-Matthis Lueckmann, et. al. 2021. Benchmarking Simulation-Based Inference.” arXiv: 2101.04653.

• Tested TMNRE on modified sbibm.

• Other methods (not TMNRE) trained 
to learn 𝑝(𝜗, 𝜂 | 𝑥). Results on 
marginalized posterior samples.

• Mean & 95% CI of Classifier 2-Sample 
Test (C2ST) for 10 simulated 𝑥0.

• TMNRE competitive results to 
sequential methods.

Simulation-based Inference Benchmark

http://arxiv.org/abs/2101.04653
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• Six parameters specify the lambda-CDM model.

• Data are power spectra (left) from the CMB.

• Simulator utilized to forecast the expected 
constraining power of future experiments.

• Budget of 5,000 simulations.

MNRE NRE

Cosmology

See Alex Cole’s 
presentation at 16:30!
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• Marginal Neural Ratio Estimation for totally amortized marginal inference.

• Proposed an iterative scheme (Truncated Marginal NRE) to focus on 𝑝 𝜃 𝑥0).
• Increases simulation efficiency with truncation.

• Enables empirical testing through local amortization.

• A method with both properties is unique.

Packages:
swyft – implementation of method – https://github.com/undark-lab/swyft

tmnre – experimental results – https://github.com/bkmi/tmnre

Conclusions

https://github.com/undark-lab/swyft
https://github.com/bkmi/tmnre


Extra Slides
Hopefully, the answer to your question can be found in the next few slides…

17
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Truncating the prior, based on the estimate posterior

Why amortize the posterior when our focus is 𝑝 𝜃 𝑥𝑜)? --> Local amortization.

Determine region of interest: (*) Γ = 𝜃 ∈ Ω ∀𝑑 = 1,… , 𝐷:
𝑝 𝜃𝑑 𝑥𝑜)

max
𝜃𝑑

𝑝 𝜃𝑑 𝑥𝑜)
> 𝛿}. 

Discard parameters which lie outside this region (far tails).

Estimate 𝚪 in a sequence of rounds:

1. Initialize Γ(1) = Ω.
2. Simulate data in Γ(𝑚) & Train a ratio estimator on 

every 1-dim marginal.
3. Approximate (*) with the previous round’s 

estimator and truncate.

4. Repeat until 
∫ 1

Γ(𝑚) 𝜃 𝑝 𝜃 𝑑𝜃

∫ 1
Γ(𝑚−1) 𝜃 𝑝 𝜃 𝑑𝜃

> 𝛽.

5. Learn arbitrary marginal posteriors in the Γ
estimate.

Visualize truncation at each of 3 
rounds. Truncation occurs along 

1-dim marginals. All posteriors 
are from the 

last round.

We use 𝜖0 = 10−6, for a gaussian joint posterior this truncates at ± −2 ln 𝜖0 𝜎. 
Truncation affects only very-low probability credibility contours.
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Classifier 2-Sample Test per d-Dimensional Marginal (C2ST-ddm) is a test statistic which 
reports the average Classifier 2-Sample Test (C2ST) across a set of d-dimensional marginals.

𝑋 ∼ 𝑃 𝑋 , 𝑌 ∼ 𝑄 𝑌 with 𝑋, 𝑌 ∈ 𝑅𝐷 and hyperparameter 1 ≤ 𝑑 ≤ 𝐷 that represents the 
marginal dimensionality of interest. 

Let 𝑆𝑃 , 𝑆𝑄 ≔ 𝑆𝑃𝑘 , 𝑆𝑄𝑘 : 𝑘 ∈ {1, 2, … , 𝐷
𝑑

where 𝑆𝑃𝑘: = {𝑥𝑘
1
, … , 𝑥𝑘

𝑛
~ 𝑃(𝑋𝑘) and 

𝑆𝑄𝑘: = {𝑦𝑘
1
, … , 𝑦𝑘

𝑛
~ 𝑃(𝑌𝑘) are sets of n samples drawn from the kth d-dimensional 

marginal of P and Q respectively. 

𝐶2𝑆𝑇 − 𝑑𝑑𝑚 𝑆𝑃 , 𝑆𝑄 ≔
1

𝐾
σ𝑘=1
𝐾 𝐶2𝑆𝑇 𝑆𝑃𝑘 , 𝑆𝑄𝑘 , with 𝐾 = 𝐷

𝑑
.

C2ST-ddm


