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Motivation for HLT anomaly detection algorithms and optimized 
fast inference 

        

● Wide application of variational autoencoders (VAE) and Graph-based VAE models
● Beyond the standard model events anomaly detection
● New Physics searches for the LHC at L1, Jets-based AE for anomaly detection 
● New Autoencoders design for High-level Trigger (HLT) online trigger

● Inference studies with HLT anomaly detection algorithms on CPU and GPU 
hardware guide decisions on GPU farm requirements for LHC Run 3 and beyond

Data Flow at the Large Hadron Collider, CERN
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Machine learning model architectures for anomaly 
detection for the High-level trigger at the LHC
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Dataset Representation: Jet-level

● Jet-level VAE model (Tensorflow) 
○ Input Shape: (# of jets, # of constituents, # input features equal particle momentum in 

cylindrical coordinates)
○ Example: (100000, 100, 3) 

● Unsupervised Learning method
○ Can be trained directly on data
○ Used Monte Carlo simulations for this use case-study
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Convolutional VAE (Conv-VAE) architecture: Jet-level

Pictorial representation of the architecture of the variational autoencoder (VAE) used for jet anomaly detection
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Conv-VAE architecture (Jet-level): Training configuration

● Machine learning libraries: Keras and Tensorflow 2.4.1
● Optimizer: Adam
● Initial learning rate: 0.001, beta = 0.0005 
● Latent dimensions: 12 (also tried other sizes: 6, 8)
● learning rate decay and early stopping procedure enforced
● Loss function = Reconstruction loss + Kullback Leibler (KL) divergence 

(loss on latent space)
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Conv-VAE (Jet-level): Model Summary example (with latent space 
dimension: 8)
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Convolutional variational Graph Autoencoder (Graph Conv-VAE)

        Pictorial representation of a Multi-layer Graph Convolutional Network (GCN-VAE) with first-order filters
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Convolutional variational Graph Autoencoder (Graph Conv-VAE)

Definitions:

● X : N x D feature matrix  
○ N: number of jet constituents, D: number of input features (pT, eta phi)

● A: adjacency matrix 
● Z: node-level output, N×F feature matrix, where F is the number of output features per 

node 

    → Graph Conv-VAE tries to reconstruct nodes features at the output

Training configuration:

● Machine learning library: Tensorflow and Keras
● Activation function: tf.nn.tanh; latent dimension:8; beta_kl: 10; kl_warmup_time: 5
● Optimizer: Adam; learning rate: 0.0001
● Loss function:  
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Conv-VAE (Jet-level) Performance: Chamfer loss 
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Graph Conv-VAE (Jet-level) Performance: Chamfer loss 
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Results: Optimized CPU based model inference - Inference 
time (latency) and resource (memory usage)
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Optimized CPU and GPU based model inference - Workflow

                                                                             

            Saved Model 2.0

                      ONNX model 

ONNX runtime 
engine 

Optimized CPU 
Inference in O(ms)

tf2onnx library 
for Tensorflow to 
ONNX model 

TensorRT Engine

TensorRT 
Runtime API

Optimized GPU 
inference in O(ms)
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Results: Conv-VAE model inference latency on CPU

● At LHC HLT trigger, typically 9 jets are present in a single event for the inference process to 
detect anomalies

● Maximal gain at  batch size: 1; with ONNX Runtime, we get the inference time within 5 ms for as 
many as 64 inferences
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Results: Graph Conv-VAE model inference latency on CPU

With ONNX Runtime, we get the inference time within 2.5 ms for as many as 64 
inferences
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CPU memory profiling for inference resource consumption: 
Conv-VAE

● Tool used: Bloomberg’s memray (memory profiler for python)

● We observe the memory footprint for the inference execution run vs. varying 
batch size 
○ Results show exact memory utilization (very little change) for both TF and ONNX 

environments

● Measure the memory footprint of the inference execution call via both native TF 
and ONNX 
○ We consider 150K signal events as this is the minimum number of events required in 

order to measure the memory footprint 
○ Result: Memory consumption with TF run: 282.35 MB; ONNX Runtime: 264.024 MB
○ Memory footprint of TF and ONNX is almost same
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CPU memory profiling for inference resource consumption: Graph 
Conv-VAE

● We observe the memory footprint to stay same when we vary batch sizes as 
with Conv-VAE

● Measure the memory footprint of the inference execution call via both native 
TF and ONNX.
○ We consider 80K signal events for inference
○ Result: Memory consumption with TF run: 4151 MB; ONNX Runtime: 4141 MB
○ Again, we observe memory footprint of TF and ONNX is almost same
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CPU memory profiling for inference resource consumption: Graph 
Conv-VAE

● Memory footprint vs. number of signal events for inference

The memory footprint gradually increases and then stays flat when we vary signal 
events 
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Optimized GPU model inference with NVIDIA TensorRT 
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Optimized GPU based model inference - Workflow

                                                                             

            Saved Model 2.0

                      ONNX model 

ONNX runtime 
engine 

Optimized CPU 
Inference in O(ms)

tf2onnx library 
for Tensorflow to 
ONNX model 

TensorRT Engine

TensorRT 
Runtime API

Optimized GPU 
inference in O(ms)
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Software libraries used for TensorRT GPU model inference

Libraries for TensorRT GPU 
inference

 Used for GPU CUDA memory 
profiling for TensorRT inference
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Optimized GPU model inference: ONNX to TensorRT (Steps)

Tensorflow SavedModel File to 
ONNX model conversion and 
ONNX model check (Step 1)

ONNX model to TensorRT 
(TRT) engine creation  
(GPU-specific)  (Step 2)
 

Computing the inference using 
TRT runtime (GPU-specific 
context) using TRT engine plan 
file  (Step 3)
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Optimized ONNX-TensorRT GPU inference - Memory 
consumption of Tesla V100 and Tesla T4 GPUs

Tool: NVIDIA Nsight systems for memory profiling and get memory statistics

nsys profile --stats=true -t cuda python3 inference_script args
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https://developer.nvidia.com/nsight-systems


Results: Optimized GPU model inference with TensorRT - 
Inference time (latency) and resource (memory usage)
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TensorRT GPU model inference latency (Conv-VAE) - Tesla V100

● Precision: FP32

The inference time stays relatively flat with varying batch size and almost doubles at 
the highest batch size
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TensorRT GPU model inference latency (GCN-VAE) - Tesla V100

The inference time gradually increases and then linearly at higher batch 
sizes 
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Tensorflow to TensorRT model inference (without ONNX)

The trend is the inference time stays relatively flat for different batch sizes but much higher 
inference time values than the optimized ONNX + TensorRT based GPU inference
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Optimized ONNX-TensorRT GPU inference for Conv-VAE vs Graph 
Conv-VAE: Average memory (Tesla V100)

The memory copy 
operations (cpu to 
gpu) and (gpu to 
cpu) dominates at 
higher batches
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The memory copy 
operations (cpu to 
gpu) dominate at 
all batch sizes



Optimized ONNX-TensorRT GPU inference for Conv-VAE vs. 
Graph Conv-VAE : Total CUDA memory operations (Tesla V100)

CUDA memory operations decline drastically according to the increase in 
batch size
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Optimized ONNX-TensorRT GPU inference for Conv-VAE and 
Graph Conv-VAE: Memory operations by type (Tesla V100)

The cuda memory 
copy (cpu to gpu) 
and (gpu to cpu) 
operations dominate 
over different batch 
sizes 
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Conclusion

● We demonstrate significant inference time savings with ONNX and TensorRT over native 
Tensorflow 2 (keras) based inference for both CPU and GPU

● We observe the O(msec) latency with different batch sizes for CPU- and GPU-based model 
inference, well within the O(100 msec) allocated to the processing of one event

● We also perform CPU and GPU memory profiling of model inference to assess resource 
consumption (memory usage) of our DL algorithms

● Our conclusions demonstrate that DL algorithms optimized with available libraries are perfectly 
compatible with the operation constraints of a typical HLT environment 

● This study confirms that there is no technical challenge in deploying DL algorithms in the 
ATLAS and CMS HLT farms in the near future
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Conv-VAE model (Jet-level): Loss curve



TESLA V100 during the ONNX-TensorRT GPU model Inference Run



TESLA T4 during the ONNX-TensorRT GPU model Inference Run



C-VAE architecture (Jet-level): Signal to Background classification 
performance



ONNX model to TensorRT (TRT) TRTExec tool for TRT engine 
creation

● TRTexec is successful (shows the PASSED message at the end of the run) and 
generates the TRT engine file from the VAE onnx model



Native Tensorflow to TensorRT model inference with GPUs



Optimized ONNX-TensorRT GPU inference for C-VAE: Average memory 
(Tesla V100 vs. Tesla T4)

The memory copy 
operations (cpu to 
gpu) and (gpu to 
cpu) dominates at 
higher batches



Optimized ONNX-TensorRT GPU inference for GCN-VAE: 
Average memory (Tesla V100 vs. Tesla T4)

The CUDA memory copy (cpu to gpu) dominates significantly over all the 
batch sizes



Optimized ONNX-TensorRT GPU inference for GCN-VAE: Average 
memory

Zooming into the average memory contribution of cuda memory copy (gpu to 
gpu) 



Optimized ONNX-TensorRT GPU inference for GCN-VAE: Total 
CUDA memory operations (Tesla V100 vs. Tesla T4)

CUDA memory operations decline drastically according to the increase in 
batch size



Optimized ONNX-TensorRT GPU inference for GCN-VAE: Memory 
operations by type (Tesla V100 vs. Tesla T4)

The cuda memory copy 
(cpu to gpu) and (gpu to 
cpu) operations 
dominate over different 
batch sizes 


