
IML 2022 Talk: Optimized Deep Learning
Inference on High Level Trigger at the LHC:
Computing time and Resource assessment

Nadezda Chernyavskaya2, Syed Hasan1,4, Pratik Jawahar5, Maurizio Pierini2, Kinga
Anna Wozniak2,3

1 Scuola Normale Superiore Pisa, 2 CERN , 3 University of Vienna , 4 ETH Zurich, 5 Worcester Polytechnic Institute

Table of Contents

● Machine learning model architectures for anomaly detection for the
High-level trigger at the LHC

● Results: Optimized CPU based model inference - Inference time (latency)
and resource (memory usage)

● Optimized GPU model inference with NVIDIA TensorRT

● Results: Optimized GPU model inference with TensorRT - Inference time
(latency) and resource (memory usage)

● Conclusion

Motivation for HLT anomaly detection algorithms and optimized
fast inference

● Wide application of variational autoencoders (VAE) and Graph-based VAE models
● Beyond the standard model events anomaly detection
● New Physics searches for the LHC at L1, Jets-based AE for anomaly detection
● New Autoencoders design for High-level Trigger (HLT) online trigger

● Inference studies with HLT anomaly detection algorithms on CPU and GPU
hardware guide decisions on GPU farm requirements for LHC Run 3 and beyond

Data Flow at the Large Hadron Collider, CERN

1

Machine learning model architectures for anomaly
detection for the High-level trigger at the LHC

2

Dataset Representation: Jet-level

● Jet-level VAE model (Tensorflow)
○ Input Shape: (# of jets, # of constituents, # input features equal particle momentum in

cylindrical coordinates)
○ Example: (100000, 100, 3)

● Unsupervised Learning method
○ Can be trained directly on data
○ Used Monte Carlo simulations for this use case-study

3

Convolutional VAE (Conv-VAE) architecture: Jet-level

Pictorial representation of the architecture of the variational autoencoder (VAE) used for jet anomaly detection

4

Conv-VAE architecture (Jet-level): Training configuration

● Machine learning libraries: Keras and Tensorflow 2.4.1
● Optimizer: Adam
● Initial learning rate: 0.001, beta = 0.0005
● Latent dimensions: 12 (also tried other sizes: 6, 8)
● learning rate decay and early stopping procedure enforced
● Loss function = Reconstruction loss + Kullback Leibler (KL) divergence

(loss on latent space)

5

Conv-VAE (Jet-level): Model Summary example (with latent space
dimension: 8)

6

Convolutional variational Graph Autoencoder (Graph Conv-VAE)

 Pictorial representation of a Multi-layer Graph Convolutional Network (GCN-VAE) with first-order filters

7

Convolutional variational Graph Autoencoder (Graph Conv-VAE)

Definitions:

● X : N x D feature matrix
○ N: number of jet constituents, D: number of input features (pT, eta phi)

● A: adjacency matrix
● Z: node-level output, N×F feature matrix, where F is the number of output features per

node

 → Graph Conv-VAE tries to reconstruct nodes features at the output

Training configuration:

● Machine learning library: Tensorflow and Keras
● Activation function: tf.nn.tanh; latent dimension:8; beta_kl: 10; kl_warmup_time: 5
● Optimizer: Adam; learning rate: 0.0001
● Loss function:

8

Conv-VAE (Jet-level) Performance: Chamfer loss
9

Graph Conv-VAE (Jet-level) Performance: Chamfer loss

10

Results: Optimized CPU based model inference - Inference
time (latency) and resource (memory usage)

11

Optimized CPU and GPU based model inference - Workflow

 Saved Model 2.0

 ONNX model

ONNX runtime
engine

Optimized CPU
Inference in O(ms)

tf2onnx library
for Tensorflow to
ONNX model

TensorRT Engine

TensorRT
Runtime API

Optimized GPU
inference in O(ms)

12

Results: Conv-VAE model inference latency on CPU

● At LHC HLT trigger, typically 9 jets are present in a single event for the inference process to
detect anomalies

● Maximal gain at batch size: 1; with ONNX Runtime, we get the inference time within 5 ms for as
many as 64 inferences

13

Results: Graph Conv-VAE model inference latency on CPU

With ONNX Runtime, we get the inference time within 2.5 ms for as many as 64
inferences

14

CPU memory profiling for inference resource consumption:
Conv-VAE

● Tool used: Bloomberg’s memray (memory profiler for python)

● We observe the memory footprint for the inference execution run vs. varying
batch size
○ Results show exact memory utilization (very little change) for both TF and ONNX

environments

● Measure the memory footprint of the inference execution call via both native TF
and ONNX
○ We consider 150K signal events as this is the minimum number of events required in

order to measure the memory footprint
○ Result: Memory consumption with TF run: 282.35 MB; ONNX Runtime: 264.024 MB
○ Memory footprint of TF and ONNX is almost same

15

https://github.com/bloomberg/memray

CPU memory profiling for inference resource consumption: Graph
Conv-VAE

● We observe the memory footprint to stay same when we vary batch sizes as
with Conv-VAE

● Measure the memory footprint of the inference execution call via both native
TF and ONNX.
○ We consider 80K signal events for inference
○ Result: Memory consumption with TF run: 4151 MB; ONNX Runtime: 4141 MB
○ Again, we observe memory footprint of TF and ONNX is almost same

16

CPU memory profiling for inference resource consumption: Graph
Conv-VAE

● Memory footprint vs. number of signal events for inference

The memory footprint gradually increases and then stays flat when we vary signal
events

17

Optimized GPU model inference with NVIDIA TensorRT

18

Optimized GPU based model inference - Workflow

 Saved Model 2.0

 ONNX model

ONNX runtime
engine

Optimized CPU
Inference in O(ms)

tf2onnx library
for Tensorflow to
ONNX model

TensorRT Engine

TensorRT
Runtime API

Optimized GPU
inference in O(ms)

19

Software libraries used for TensorRT GPU model inference

Libraries for TensorRT GPU
inference

 Used for GPU CUDA memory
profiling for TensorRT inference

20

Optimized GPU model inference: ONNX to TensorRT (Steps)

Tensorflow SavedModel File to
ONNX model conversion and
ONNX model check (Step 1)

ONNX model to TensorRT
(TRT) engine creation
(GPU-specific) (Step 2)

Computing the inference using
TRT runtime (GPU-specific
context) using TRT engine plan
file (Step 3)

21

Optimized ONNX-TensorRT GPU inference - Memory
consumption of Tesla V100 and Tesla T4 GPUs

Tool: NVIDIA Nsight systems for memory profiling and get memory statistics

nsys profile --stats=true -t cuda python3 inference_script args

22

https://developer.nvidia.com/nsight-systems

Results: Optimized GPU model inference with TensorRT -
Inference time (latency) and resource (memory usage)

23

TensorRT GPU model inference latency (Conv-VAE) - Tesla V100

● Precision: FP32

The inference time stays relatively flat with varying batch size and almost doubles at
the highest batch size

24

TensorRT GPU model inference latency (GCN-VAE) - Tesla V100

The inference time gradually increases and then linearly at higher batch
sizes

25

Tensorflow to TensorRT model inference (without ONNX)

The trend is the inference time stays relatively flat for different batch sizes but much higher
inference time values than the optimized ONNX + TensorRT based GPU inference

26

Optimized ONNX-TensorRT GPU inference for Conv-VAE vs Graph
Conv-VAE: Average memory (Tesla V100)

The memory copy
operations (cpu to
gpu) and (gpu to
cpu) dominates at
higher batches

27

The memory copy
operations (cpu to
gpu) dominate at
all batch sizes

Optimized ONNX-TensorRT GPU inference for Conv-VAE vs.
Graph Conv-VAE : Total CUDA memory operations (Tesla V100)

CUDA memory operations decline drastically according to the increase in
batch size

28

Optimized ONNX-TensorRT GPU inference for Conv-VAE and
Graph Conv-VAE: Memory operations by type (Tesla V100)

The cuda memory
copy (cpu to gpu)
and (gpu to cpu)
operations dominate
over different batch
sizes

29

Conclusion

● We demonstrate significant inference time savings with ONNX and TensorRT over native
Tensorflow 2 (keras) based inference for both CPU and GPU

● We observe the O(msec) latency with different batch sizes for CPU- and GPU-based model
inference, well within the O(100 msec) allocated to the processing of one event

● We also perform CPU and GPU memory profiling of model inference to assess resource
consumption (memory usage) of our DL algorithms

● Our conclusions demonstrate that DL algorithms optimized with available libraries are perfectly
compatible with the operation constraints of a typical HLT environment

● This study confirms that there is no technical challenge in deploying DL algorithms in the
ATLAS and CMS HLT farms in the near future

30

BACKUPS

Conv-VAE model (Jet-level): Loss curve

TESLA V100 during the ONNX-TensorRT GPU model Inference Run

TESLA T4 during the ONNX-TensorRT GPU model Inference Run

C-VAE architecture (Jet-level): Signal to Background classification
performance

ONNX model to TensorRT (TRT) TRTExec tool for TRT engine
creation

● TRTexec is successful (shows the PASSED message at the end of the run) and
generates the TRT engine file from the VAE onnx model

Native Tensorflow to TensorRT model inference with GPUs

Optimized ONNX-TensorRT GPU inference for C-VAE: Average memory
(Tesla V100 vs. Tesla T4)

The memory copy
operations (cpu to
gpu) and (gpu to
cpu) dominates at
higher batches

Optimized ONNX-TensorRT GPU inference for GCN-VAE:
Average memory (Tesla V100 vs. Tesla T4)

The CUDA memory copy (cpu to gpu) dominates significantly over all the
batch sizes

Optimized ONNX-TensorRT GPU inference for GCN-VAE: Average
memory

Zooming into the average memory contribution of cuda memory copy (gpu to
gpu)

Optimized ONNX-TensorRT GPU inference for GCN-VAE: Total
CUDA memory operations (Tesla V100 vs. Tesla T4)

CUDA memory operations decline drastically according to the increase in
batch size

Optimized ONNX-TensorRT GPU inference for GCN-VAE: Memory
operations by type (Tesla V100 vs. Tesla T4)

The cuda memory copy
(cpu to gpu) and (gpu to
cpu) operations
dominate over different
batch sizes

