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Proton Computed Tomography & The Bergen pCT Detector 1

• Proton CT: Alternative imaging technique to
conventional computed tomography → promises
reduced uncertainties for proton/hadron therapy
treatment planning.

• Bergen (Norway) pCT collaboration develops novel
pCT scanner completely based and the ALPIDE
pixel sensor.

• Consists of 41 detector absorber layers and 2
tracking layers.

Image courtesy of Alexander Wiebel

1Alme et al. A High-Granularity Digital Tracking Calorimeter Optimized for Proton CT. Frontiers in Physics.
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Reinforcement Learning

• Goal: Find an optimal (or nearly-optimal) policy π∗ by interacting with the environment.
(maximize the expected cumulative reward).

• Policy: Decision strategy of the agent for each given state.

• Value: How good is a state in the long run (expected discounted future reward).

• Basic idea: Learn a policy from raw data that optimizes the physical plausibility of the
reconstruction.
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Detector Graph Generation

• All possible combinations of proton tracks as a
directed acyclic graph G = (V, E) with:

• v ∈ V : Particle hits in the detector.

• e ∈ E Possible track segments connecting two hits
of adjacent layers (reversed → backward tracking).

• Edge and node features (v⃗ , e⃗):

v⃗i = (edep, xi , yi , zi ) (1.1)

e⃗ij = (rij , θij , ϕij) (1.2)
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Extraction of Observation- and Action Features

• Select features to provide sufficient history
(w.r.t single track).

• Independence of scattering events →
considering only a one-step history is
sufficient.

• Two different set of features:

1 observation-features: History over last
segment.

2 action-features: Collection of possible
next segments (correspond to actions).
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Network Architecture - Interaction & Pointer Modules
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Inductive Bias using Positional Encoding & Dynamic Receptive Fields

• Goal: Encode positional information of different orders of
magnitude with fixed spatial resolution → Employ
controllable re-scaling using idea of dynamic receptive fields:

NDRF (st−1:t , st:t+1) = clip

(
0.5 · (1− sim)

Φclip(h⃗emb
o )

, 0, 1

)
· αscale (2)

• where sim denotes the cosine similarity sim(et−1,t , et,t+1) and

Φclip : Rd → R denotes a MLP with clip(Φ(h⃗emb
o ), ϵ, 1).
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Policy/Value Optimization
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• For every training iteration:
• Initial ”pre-state” sampled from uniform distribution over

last N layers. State definition requires a transition in the
detector to be fully parametrized → track seeding (currently
using ground truth).

• Sample stepwise multiple track candidates over all layers
at ∼ πθk (at |st) from environment following the current
behavior policy.

• Reward & advantage calculations based on physical
likelihood of observing the sampled trajectory (multiple
Coulomb scattering).

• Multiple optimization steps for πθ and V π
θ using

PPO-CLIP.
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Preliminary Results: Setup

• Phantoms: Head phantom 2, water phantoms t ∈ {100, 150, 200} mm with
1e4 primaries.

• Dataset: Split into N reinforcement learning environments (tracking layers were
removed) with M ∈ {10, 20, 30, 40, 50, 100, 200} primaries per frame (80/20 train test
split).

• Training: Train 500 steps on environments with 100 primaries per frame (≈ 15 min)

• Track filtering: Thresholds for scattering angle and energy deposition in last layer→
remove secondaries and tracks leaving the detector.

• Metrics: Purity (p) and Efficiency (ϵ) → results averaged over 5 runs

p =
Nrec,+

Nrec,+/−
, ϵ =

Nrec,+

Ntotal
, (3)

2Giacometti et al.. Development of a high resolution voxelised head phantom for medical physics
applications. Phys Med. 2017 Jan;33:182-188.
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Preliminary Results

head phantom, 100 primaries
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Conclusion and Outlook

• Reinforcement learning proves to be a promising optimization technique for track
reconstruction leveraging deep neural networks while requiring no manual
supervision.

• Architecture allows for generalization to previously unseen particle densities.

• Still some difficulties with optimizing inhomogeneous detector geometries → symmetries
in the transitions are the main factor of success.

Future Work

• Stabilize training with tracking layers.

• When reconstructing a single the system remains still partial observable (influence of
other tracks). → Multi-Agent Reinforcement Learning (MARL).
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Backup Slides
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Backup Slides - Learned Φclip(h⃗
emb
o ) Values: (100 primaries, head

phantom)
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Backup Slides - Reward Calculation
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• Reward rt for time step t is based on the state triplet
⟨st+1, st , st−1⟩:

rt = logPHighland(θst :st−1 |θst+1:st ) (4)

• Where PHighland is a normal distribution with zero mean and
θ0 with

θ0 =
14.1MeV

pv
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. (5)
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Backup Slides - Preliminary Results with Tracking Layers I

• Modifications:
1 Decrease carrier thickness of first

detector layer to match carbon carrier of
tracking layers → symmetry of material
budget.

2 Increase number of training iterations to
2000

3 Independent reward normalization for
detector → detector and
detector/tracker → tracker transitions.

head phantom, 100 primaries
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Backup Slides - Preliminary Results with Tracking Layers II

• Modifications:
1 Increase number of training iterations to

2000
2 Independent reward normalization for

detector → detector, detector → tracker
and tracker → tracker transitions.

head phantom, 100 primaries
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