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Introduction: CMS upgrade

> upgrade to HL-LHC (Run 4 start ~2029)
— significant increase in instantaneous
luminosity
® Lgesign = 103 cm™2s7!
*Run 2 & 3: 2 X Lesign
*'Run 4: 7.5 X Lgesign
— expect about 200 additional interactions
(pileup) each bunch crossing

> CMS upgrade foresees tracking in first
event-level trigger (L1)
— track reconstruction at 40 MHz
— reconstruct primary vertex
— crucial for separating hard
interaction from pileup
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Track reconstruction at L1

> unique pt module concept
— contains two closely spaced
sensors (pixel or strip)
— can correlated hits between sides
to detect passing particles ( pr > 2 GeV)
— charged particle track stubs

* track reconstruction
— reconstruct tracks by
combining stubs
— implemented in FPGAs
— heavily parallelized by
subdividing tracker
into 9 p-sectors
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Primary vertex reconstruction

MS:Experiment at the LHC; CERN

> problem % 223,'232;‘27"[;";53‘??:‘}?&iii;;&’f:?fzf“” high’'PU run in 20 /1 6
— grouping tracks into spatial clusters (=vertices) = ‘ ' | =
— offline CMS reconstruction uses deterministic
annealing to cluster tracks into vertices
— too complex for L1 trigger

> histogram approach

— create histogram of zyp from tracks
with equidistant 256 bins
weight each entry by track pr
take the middle of the 3 consecutive
highest bins as z position of primary vertex
zo window to associate tracks to vertex;
other tracks are treated as pileup
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4 .
End-to-end approach npus :
up to ~200 track features (~10)
» motivat P <
motivation tracks 205 PTs X - - -
— optimally explore track features \  /

— optimize for track association throughout
— study potential of using ML

weight per track

> histograms weighted histogram of 2g
— created as part of the neural network |

using a given set of values & weights

— weights can be result of preceding n:tajor?kl < [convolution/dense layers
neural network layers Y optional
— weight function is trainable latent

> v features

targets

— vertex position z; & association L dense

— optional: learn latent variables for rrack-vertex \
track-vertex association likelihood association { [ P(track|zEV)
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CMS Phase-2 Simulation Preliminary 14 TeV, 200 PU

Learning track weights

> differentiable histogram
— implemented custom operation for TensorFlow
— partial derivatives for backpropagation of gradients per bin i

tracks
bin content: h; = ) 6(j € bin i) x w(pr;, 1, X5, - )
J
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> weight function
— weight can capture complex correlation of features
e.g. linear with pr, anticorrelated with x2, etc.
— easy to extend to new features in the future
— track weights can be negative; ignored in histogram
— effectively removes “unimportant” tracks (e.g. pileup)
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Synthesis

NN is trained end-to-end BUT synthesized in 4 parts:
track weight, histograming, pattern recognition, track-vertex association

— FPGA: Xilinx VU9P @ 360 MHz

using hls4ml to translate keras model into vivado HLS — VHDL
multiple instances of weight & association parts foreseen; final wiring in VHDL

network pruned & quantized (fixed-point instead of floats) using QKeras

— huge reduction in resources; in particular DSPs
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Performance: Primary vertex

baseline neural network residuals

CMS Phase-2 Simulation Preliminai 14 TeV, 200 PU
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— similar resolution in Azp = 25°° — 25™° reached in core of residuals

— used so-called “pseudo Huber” loss ( L = v/1 + 62 — 1) — robust against outliers
— far fewer completely misreconstructed events with NN approach
— similar performance with quantized & pruned NN variant
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Performance: Track-vertex association

Track to Vertex Association False Positive Rate

ROC curve

CMS Phase-2 Simulation Preliminary 14 TeV, 200 PU

<= Baseline AUC: 0.9101
— NN AUC: 0.9828
— QNN AUC: 0.9832
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~ track association to primary vertex = ultimate goal = define pileup-insensitive trigger objects
— hugely improved association with NN compared to baseline approach
~ improvements seen in tails of tracker ERsS = |37 5 x 07|

ction @ L1 withCMS~ |\ / /- . — -~ Slide 9



Summary

> primary vertex reconstruction at L1

for the CMS upgrade

— CMS foresees tracking & vertexing at L1
to deal with increased pileup at HL LHC

— crude vertexing algorithm in place

> novel neural network approach
— optimally exploit (limited) information
— optimized end-to-end
— deployable on FPGAs

> further information: CMS-DP-2021-035
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Backup
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NN architecture

Track features ”l
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