Warsaw University of Technology

How to generate all possible simulations with GANs?

Selectively enhacing the diveristy of GAN-generated samples

05/05/202 I

Jan Dubiński, Kamil Deja, Sandro Wenzel, Bartosz Świrta, Przemysław Rokita, Tomasz Trzciński

Fast simulation of the Zero Degree Calorimeter

- We treat the response of the ZDC as a 44x44 I-channel image
- The image is produced in reponse to a particle described by 9 conditional variables (Energy, mass, charge, Pxyz, Vxyz)
- We have run the simulation multiple times for each set of particle properties

11.07.2022 5th IML Jan Dubiński

... but fail to simulate possible diverse outcomes

3 ZDC responses generated for the same particle (same input conditional data)

11.07.2022

Methods to increase diversity of GAN samples exist ...

... but introduce problems for "consistent" showers

3 ZDC responses generated for the same particle (same input conditional data)

11.07.2022 5th IML Jan Dubiński

Selective increase of diversity

 \propto_c - measure of training samples diversity for this particular set of conditionals c

We use mean standard deviation of pixels normalized from 0 to 1

 d_g - measure of distance between 2 images generated from different noise vectors $\boldsymbol{z}_1, \boldsymbol{z}_2$

We use L₁norm between features extracted from the discrimiantor penultimate layer

$$L = L_{gen} + \lambda L_{div} \quad div = \propto_{c} \times \left(\frac{d_{g}\left(G((z_{1}, c)), G((z_{2}, c))\right)}{d_{z}(z_{1}, z_{2})}\right)^{-1}$$

 d_z - measure of distance between 2 input noise vectors $\mbox{We use } L_1(z_1,z_2)$

GAN generates diverse results ...

... and keeps consistency where needed

3 ZDC responses generated for the same particle (same input conditional data)

Improvement of simulation quality

Our method:

- increases the diversity of generated samples for a selected subset of input data
- leads to higher simulation fidelity by:
 - decreasing the differences between the distribution of original and fast simulation
 - smoothing the distribution of the generated results.