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Speaking at an ML workshop, one instance where you 
shouldn’t use ML methods: 


theory uncertainty mitigation
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Biases and systematic uncertainties

Application: Unlabelled 
data from LHCTraining Data: Simulations

ML learns any biases in training data:

Known systematic imperfections in physics simulators

→ systematic uncertainties
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Biases and systematic uncertainties

Application: Unlabelled 
data from LHCTraining Data: Simulations

ML learns any biases in training data:

Known systematic imperfections in physics simulators

→ systematic uncertainties

Most popular solution: Penalise network for having a biased output, eg. with adversarial decorrelation

Figure 2: Toy example. (Left) Conditional probability densities of the decision scores at Z = ��, 0,� without
adversarial training. The resulting densities are dependent on the continuous parameter Z, indicating that f is
not pivotal. (Middle left) The associated decision surface, highlighting the fact that samples are easier to classify
for values of Z above �, hence explaining the dependency. (Middle right) Conditional probability densities of
the decision scores at Z = ��, 0,� when f is built with adversarial training. The resulting densities are now
almost identical to each other, indicating only a small dependency on Z. (Right) The associated decision surface,
illustrating how adversarial training bends the decision function vertically to erase the dependency on Z.

where � � 0 is a hyper-parameter controlling the trade-off between the performance of f and its
independence with respect to the nuisance parameter. Setting � to a large value will preferably
enforces f to be pivotal while setting � close to 0 will rather constraint f to be optimal. When the
lower bound is strict, let us note however that there may exist distinct but equally good solutions ✓f , ✓r
minimizing Eqn. 11. In this zero-sum game, an increase in accuracy would exactly be compensated
by a decrease in pivotality and vice-versa. How to best navigate this Pareto frontier to maximize a
higher-level objective remains a question open for future works.

Interestingly, let us finally emphasize that our results hold using only the (1D) output s of f(·; ✓f ) as
input to the adversary. We could similarly enforce an intermediate representation of the data to be
pivotal, e.g. as in (Ganin and Lempitsky, 2014), but this is not necessary.

5 Experiments

In this section, we empirically demonstrate the effectiveness of the approach with a toy example
and examples from particle physics. Notably, there are no other other approaches to compare to in
the case of continuous nuisance parameters, as further explained in Sec. 6. In the case of binary
parameters, we do not expect results to be much different from previous works.

5.1 A toy example with a continous nuisance parameter

As a guiding toy example, let us consider the binary classification of 2D data drawn from multivariate
gaussians with equal priors, such that

x ⇠ N
✓
(0, 0),


1 �0.5

�0.5 1

�◆
when Y = 0, (12)

x|Z = z ⇠ N
✓
(1, 1 + z),


1 0
0 1

�◆
when Y = 1. (13)

The continuous nuisance parameter Z here represents our uncertainty about the location of the mean
of the second gaussian. Our goal is to build a classifier f(·; ✓f ) for predicting Y given X , but such
that the probability distribution of f(X; ✓f ) is invariant with respect to the nuisance parameter Z.

Assuming a gaussian prior z ⇠ N (0, 1), we generate data {xi, yi, zi}Ni=1, from which we train a
neural network f minimizing Lf (✓f ) without considering its adversary r. The network architecture
comprises 2 dense hidden layers of 20 nodes respectively with tanh and ReLU activations, followed
by a dense output layer with a single node with a sigmoid activation. As shown in Fig. 2, the resulting
classifier is not pivotal, as the conditional probability densities of its decision scores f(X; ✓f ) show
large discrepancies between values z of the nuisance parameters. While not shown here, a classifier
trained only from data generated at the nominal value Z = 0 would also not be pivotal.
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Decorrelation

Classifier output similar for various Z

Louppe et al
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Intuition for what might go wrong with decorrelation for two-point uncertainties
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result of approximations when performing calculations and are also due to parameter free-

dom in phenomenological models that are needed when first-principles calculations are not

possible. The canonical examples for these two types of uncertainties are perturbative

uncertainties from series truncation and fragmentation modeling. For the former, calcu-

lations are truncated at a fixed order in perturbation theory and the result depends on

unphysical scales. These scales are varied typically by factors of two in order to determine

the uncertainty. Fragmentation modeling uncertainties are often evaluated by comparing

two di↵erent models, such as the string model [29, 30] in the Pythia [31, 32] parton shower

Monte Carlo (PSMC) and the cluster model [33, 34] in the Herwig [35, 36] PSMC. These

variations are then interpreted as a one standard deviation uncertainty and combined with

other sources of uncertainty in a final statistical analysis.

We examine the interplay of decorrelation with theory uncertainties. In particular,

we will show that constructing a classifier that is independent of a given theory nuisance

parameter does not mean that the theory uncertainty is zero. Instead, it means that

the only handle to determine the theory uncertainty is eliminated. Figure 1 illustrates the

intuition behind why this might be the case. As concrete examples, we study fragmentation

modeling for Lorentz-boosted W boson jet classification and factorization scale variations

when classifying events as either from W+jets or t-channel single top quark events.

Pythia

Herwig

Sherpa

Next year’s 
generator

Nature

Estimated Uncertainty

Without Decorrelation

Pythia
Herwig

Sherpa

Next year’s 
generator

Nature

Estimated Uncertainty

With Decorrelation

Figure 1. An illustration of the potential impact of training a classifier to be decorrelated to
two-point uncertainties. The distance between Pythia and Herwig is treated as the uncertainty.
Left: Without decorrelation, the uncertainty covers nature even if nature does not lie on the line
connecting Pythia and Herwig. Right: The distance between Pythia and Herwig is reduced
due to the decorrelation requirement, resulting in a smaller estimate of the uncertainty, which no
longer covers nature. These diagrams are meant only to be intuitive illustrations.

This paper is organized as follows. Section 2 briefly introduces existing decorrela-

tion techniques. Numerical examples of both two-point and continuous uncertainties are

provided in Sec. 3. The paper ends with conclusions and outlook in Sec. 4.
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Decorrelation shrinks difference between Herwig & Pythia, but not to nature. 

It does not generalise to full phase space!


Typically in ATLAS we cannot afford to have a third simulator for this cross-check
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Also the case for continuous uncertainties: 
Factorisation Scale Uncertainty

ROC curve (higher is better)

Figure 6. Top: the performance of the nominal t-channel single top versus W+jets classifier. The
blue band represents the uncertainty estimated by varying the factorization scale by 1

2 and 2 at LO.
Bottom: the same as the top, but for the adversarially trained classifier. Adversarial training only
reduces the di↵erence in performance to factorization scale variations, not the di↵erence to NLO,
indicating that adversarial training provides a reduced estimate of the true uncertainty, which does
not translate to a reduction in the true uncertainty.
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Now, where you actually can do uncertainty mitigation with ML

6

Experimental uncertainties: Eg. Calibration of a detector, we can produce 
precise simulations at each possible value of the bias

Effect of Energy Scale (Z) 
bias on momentum 

measurement

, HiggsMLH → ττ

 (GeV)pτ
t

See details
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Experimental uncertainties: Eg. Calibration of a detector, we can produce 
precise simulations at each possible value of the bias

Effect of Energy Scale (Z) 
bias on momentum 

measurement

, HiggsMLH → ττ

 (GeV)pτ
t

You can train on datasets from various values of bias


For these, we compare different bias mitigation techniques and show 
the benefit of uncertainty aware networks to optimally account for 
additional information about the bias

“Adaptive risk minimisation”

3

output a score (see e.g. [50]),

s(x) =
p(x|z = z0, S)

p(x|z = z0, S) + p(x|z = z0, B)
, (1)

where

p(·) denotes a probability density, S represents the sig-
nal class and B represents the background class. The
score of the network is used as an observable with high
sensitivity to the parameter of interest for the final mea-
surement.

C. Data Augmentation

An alternative method is to augment the training data
to include signal and background samples with several
values of the nuisance parameters. A network trained
optimally to minimise a BCE loss learns the score,

s(x) =
hp(x|Z, S)ipZ

hp(x|Z, S)ipZ + hp(x|Z,B)ipZ

, (2)

where pZ is the probability density over the nuisance pa-
rameter Z, treated as a random variable with some prob-
ability density chosen by the experimenter. Typically, Z
is discrete and has a nonzero probability mass at only a
few values. The score s(x) is then treated in the same
way as in the baseline case (Eq. 1).

D. Adversarial Training

An orthogonal strategy is to train a classifier with the
explicit objective of being insensitive to the e↵ects of the
nuisance parameter. Our implementation follows the ad-
versarial training prescription of Ref. [12]. However, to
improve the training stability and speed, the classifier
and adversary are concatenated together through a gra-
dient reversal layer [51] and trained simultaneously. The
classifier is trained with the objective to minimize the
classification loss and maximise the adversarial loss and
the second loss has a relative weight of �, a tunable hyper-
parameter.

While training for exact invariance in this adversarial
setup can be tricky [52], maximizing overall sensitivity
requires a compromise between the level of invariance to
nuisance parameters and the classification power. The
Gaussian case described in Sec. IV is an extreme exam-
ple where exact invariance to the nuisance parameter re-
quires zero discriminating power for the classifier.

In the end, the score of the classifier on observed data
is used as an observable in the final measurement, in the
same way as for the baseline classifier.

E. Uncertainty-Aware Classifier

The concept explored in this paper is to parameter-
ize the network in the nuisance parameters; see Fig. 1.
Specifically, the network is trained with the true value
of the nuisance parameter z as an input to the network
in additional to the observables x. A network trained
optimally to minimise a BCE loss learns the score,

s(x, z) =
p(x|Z = z, S)

p(x|Z = z, S) + p(x|Z = z,B)
. (3)

The score of this classifier is not used as a single ob-
servable for the final fit as in the previous methods. At
evaluation time, while the x values remain fixed as inputs
to the network, the unknown z is left as a parameter, al-
lowing for later profiling over the nuisance parameters in
the final measurement.

Importantly, note that Eq. 3 depends on z. This means
that the calculation of analysis observable(s) depends on
z and change as the nuisance parameter is varied, during
the evaluation of uncertainties and/or during nuisance
parameter profiling. This is in contrast to the standard
search paradigm in which the calculation of the analysis
observables are fixed and the sensitivity to z is evaluated
post-hoc. Allowing the calculation of the analysis ob-
servables to depend explicitly on the value of z is not the
traditional approach, but it does not require that the ex-
perimenter have any special knowledge of z. Formation
of a confidence interval in the space of model parameters
(either parameters of interest or nuisance parameters)
naturally requires calculating the likelihood ratio of the
model as those parameters vary, relative to the best-fit
parameters. It is natural for the calculation of the anal-
ysis observable, a proxy for the likelihood ratio, to vary
with those parameters. One can later profile over the
nuisance parameters to capture the impact of our lack of
knowledge of its true value. The traditional approach of
fixing the analysis observable calculation can be thought
of as an ad-hoc approximation of the full method.

.	.
	.

3

z

x1
x2

f(x1, x2, . . . , z)

.	.
	.

.	.
	.

FIG. 1: The architecture of an uncertainty-aware
network, in which the nuisance parameter z is treated
as a feature alongside the observed data x, learning a

decision function which varies with the nuisance
parameter.

See details
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the o�cial ATLAS software [65]. The three largest back-
grounds from Z/�

⇤ ! ⌧⌧ , tt̄ and W + jets are simulated
with the same chain and mixed in proportions deter-
mined by their relative cross sections. Di↵erent aspects
of the Z/�

⇤ ! ⌧⌧ background are simulated with Alp-

gen, Pythia8, Herwig, and Sherpa [66]; the details
can be found in Table 1 of Ref. [58]. The tt̄ background is
simulated with Powheg and Pythia8 and the W +jets
background is simulated withAlpgen [67] and Pythia8.

(a) Data generated with z = ⇡
4 .

(b) Data generated with z = ⇡
2 .

FIG. 6: The profile likelihood maxz L(µ, z) as a
function of the parameter of interest, µ for likelihoods

calculated with templates built from the various
classifiers. Narrower curves indicate more precise

measurements having accounted for systematic and
statistical uncertainties. The baseline classifier assumes

z = ⇡
4 , and matches the performance of the

uncertainty-aware classifier in data generated with
z = ⇡

4 (top). In data generated with z = ⇡
2 , the power

of all classifiers other than the uncertainty-aware
classifier become significantly weaker.

Each event is characterized by 29 features2, including the
lepton momenta and angles, the magnitude and direction
of missing transverse momentum, the energy and angles
of leading and sub-leading jets, and several other primary
and derived variables. See Ref. [56] for details.
The most important nuisance parameter is the un-

known absolute energy scale of the hadronically decaying
⌧ leptons. We follow prior studies [52, 59] and model this
using a skewing function [69] which is applied to the ⌧ lep-
ton ET, for signal and background alike. The minimum
ET threshold of 22 GeV is applied after skewing.
At the nominal value of the nuisance parameter, z = 1,

the ⌧ lepton energies are left unchanged. The impact of
z = 0.9 or 1.1, on several features is shown in Fig. 7.
The (unweighted) total number of events that pass the
ET threshold for the z = 0.9, z = 1 and z = 1.1 datasets
are 618906, 719349 and 818201 respectively. The data are
split into training and test set in the ratio 2:1. Since the
data at various values of z are generated from the nominal
sample, the samples are to a large extent correlated. The
train-test split therefore is determined before the skewing
function and ET threshold are applied, ensuring complete
independence between training and test sets.
Thirty bins are used to construct the template and

observed histograms.

A. Description of Trained Models

All methods were implemented using neural networks.
The baseline classifier was trained only on data at z = 1,
while the data augmentation classifier, uncertainty-aware
classifier and the adversarial classifier are all trained at
24 values spaced between z = 0.7 and z = 1.4. Two
additional classifiers were also trained on data at z = 0.8
and z = 1.1 to estimate the best possible performance
for an unparameterized classifier at these values of the
nuisance parameter.
Technical details about the training procedure and ar-

chitectures of the models are given below.

1. Baseline Classifier

The neural network comprises 10 hidden layers with
512 nodes each, ReLU activations and L2 kernel regu-
larizers for all but the first hidden layer and a final layer
with a single node and sigmoid activation. It was trained
with an RMSProp optimizer, BCE loss and a batch size
of 4096.

2 The DER mass MMC feature listed in Ref. [56] was not included
in the studies, following precedent set by Ref. [52], because the
Missing Mass Calculator [68] is slow to run and as an MCMC
algorithm, introduces an additional source of stochasticity which
makes comparisons di�cult.

Narrower is better

Signal Strength

Uncertainty-aware learning outperforms any other method, including decorrelation

Uncertainty-Aware classifier is much narrower ⇒ smallest [statistical + systematic] uncertainty on measurement

Decorrelation

Published: Ghosh et al. PhysRevD.104.056026 (2021)

Not compared to inference 
aware techniques

Straightforward application to full 
ATLAS/CMS analysis today!

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.056026
https://arxiv.org/abs/1806.04743
https://arxiv.org/abs/1806.04743
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Related work in ML community: Adaptive risk minimisation
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At training time data comes from various values of bias (different handwriting from different 
people)

At application time all of the data comes from the same bias (same person’s handwriting)


If you can infer patterns about the application handwriting, you can get a better final prediction

arXiv:2007.02931

Adaptive Risk Minimization:
Learning to Adapt to Domain Shift

Marvin Zhang⇤1, Henrik Marklund⇤2, Nikita Dhawan⇤1,
Abhishek Gupta1, Sergey Levine1, Chelsea Finn2

1 UC Berkeley, 2 Stanford University

Abstract

A fundamental assumption of most machine learning algorithms is that the training
and test data are drawn from the same underlying distribution. However, this as-
sumption is violated in almost all practical applications: machine learning systems
are regularly tested under distribution shift, due to changing temporal correlations,
atypical end users, or other factors. In this work, we consider the problem setting
of domain generalization, where the training data are structured into domains and
there may be multiple test time shifts, corresponding to new domains or domain
distributions. Most prior methods aim to learn a single robust model or invariant
feature space that performs well on all domains. In contrast, we aim to learn models
that adapt at test time to domain shift using unlabeled test points. Our primary
contribution is to introduce the framework of adaptive risk minimization (ARM),
in which models are directly optimized for effective adaptation to shift by learning
to adapt on the training domains. Compared to prior methods for robustness, in-
variance, and adaptation, ARM methods provide performance gains of 1-4% test
accuracy on a number of image classification problems exhibiting domain shift.

1 Introduction

The standard assumption in empirical risk minimization (ERM) is that the data distribution at test
time will match the training distribution. When this assumption does not hold, i.e., when there is
distribution shift, the performance of standard ERM methods can deteriorate significantly [54, 38].

Figure 1: An example of ambiguous data
points in handwriting classification, eval-
uated quantitatively in Section 5.

As an example which we study quantitatively in Section 5,
consider a handwriting classification model that, after
training on data from past users, is deployed to new end
users. Each new user represents a new test distribution that
differs from the training distribution. Thus, each test set-
ting involves dealing with shift. In Figure 1, we visualize
a batch of 50 examples from a test user, and we highlight
an ambiguous example which may be either a “2” (written
with a loop) or an “a” (in the double-storey style) depend-
ing on the user’s handwriting. Due to the biases in the
training data, an ERM trained model incorrectly classifies
this example as “2”. However, we can see that the batch of
images from this test user contains other examples of “2”
(written without loops) and “a” (also double-storey) from
this user. Can we somehow leverage this unlabeled data
to better handle test shifts caused by new users?

⇤equal contribution

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.
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the o�cial ATLAS software [65]. The three largest back-
grounds from Z/�

⇤ ! ⌧⌧ , tt̄ and W + jets are simulated
with the same chain and mixed in proportions deter-
mined by their relative cross sections. Di↵erent aspects
of the Z/�

⇤ ! ⌧⌧ background are simulated with Alp-

gen, Pythia8, Herwig, and Sherpa [66]; the details
can be found in Table 1 of Ref. [58]. The tt̄ background is
simulated with Powheg and Pythia8 and the W +jets
background is simulated withAlpgen [67] and Pythia8.

(a) Data generated with z = ⇡
4 .

(b) Data generated with z = ⇡
2 .

FIG. 6: The profile likelihood maxz L(µ, z) as a
function of the parameter of interest, µ for likelihoods

calculated with templates built from the various
classifiers. Narrower curves indicate more precise

measurements having accounted for systematic and
statistical uncertainties. The baseline classifier assumes

z = ⇡
4 , and matches the performance of the

uncertainty-aware classifier in data generated with
z = ⇡

4 (top). In data generated with z = ⇡
2 , the power

of all classifiers other than the uncertainty-aware
classifier become significantly weaker.

Each event is characterized by 29 features2, including the
lepton momenta and angles, the magnitude and direction
of missing transverse momentum, the energy and angles
of leading and sub-leading jets, and several other primary
and derived variables. See Ref. [56] for details.
The most important nuisance parameter is the un-

known absolute energy scale of the hadronically decaying
⌧ leptons. We follow prior studies [52, 59] and model this
using a skewing function [69] which is applied to the ⌧ lep-
ton ET, for signal and background alike. The minimum
ET threshold of 22 GeV is applied after skewing.
At the nominal value of the nuisance parameter, z = 1,

the ⌧ lepton energies are left unchanged. The impact of
z = 0.9 or 1.1, on several features is shown in Fig. 7.
The (unweighted) total number of events that pass the
ET threshold for the z = 0.9, z = 1 and z = 1.1 datasets
are 618906, 719349 and 818201 respectively. The data are
split into training and test set in the ratio 2:1. Since the
data at various values of z are generated from the nominal
sample, the samples are to a large extent correlated. The
train-test split therefore is determined before the skewing
function and ET threshold are applied, ensuring complete
independence between training and test sets.
Thirty bins are used to construct the template and

observed histograms.

A. Description of Trained Models

All methods were implemented using neural networks.
The baseline classifier was trained only on data at z = 1,
while the data augmentation classifier, uncertainty-aware
classifier and the adversarial classifier are all trained at
24 values spaced between z = 0.7 and z = 1.4. Two
additional classifiers were also trained on data at z = 0.8
and z = 1.1 to estimate the best possible performance
for an unparameterized classifier at these values of the
nuisance parameter.
Technical details about the training procedure and ar-

chitectures of the models are given below.

1. Baseline Classifier

The neural network comprises 10 hidden layers with
512 nodes each, ReLU activations and L2 kernel regu-
larizers for all but the first hidden layer and a final layer
with a single node and sigmoid activation. It was trained
with an RMSProp optimizer, BCE loss and a batch size
of 4096.

2 The DER mass MMC feature listed in Ref. [56] was not included
in the studies, following precedent set by Ref. [52], because the
Missing Mass Calculator [68] is slow to run and as an MCMC
algorithm, introduces an additional source of stochasticity which
makes comparisons di�cult.

Narrower is better

Signal Strength

They outperform any other method, including decorrelation

Uncertainty-Aware classifier is much narrower ⇒ smallest 
[statistical + systematic] uncertainty on measurement

Toy problem

10

(a) Systematic Down Data (b) Nominal Data (c) Systematic Up Data

FIG. 9: Physics Dataset: Profiled NLL curves for all four classifiers evaluated on a systematic down (zT = 0.8), b
nominal data (zT = 1.0) and c systematic up data (zT = 1.1) where the true value of µ is 1. Narrower curves

indicate more precise measurements having accounted for systematic and statistical uncertainties.

Narrower is better

Up is better

ATLAS 
simulation


H → ττ

Decorrelation

Published: Ghosh et al. PhysRevD.104.056026 (2021)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.056026
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Most common use of ML in HEP

Train ML classifier:

• Signal (example Higgs Bosons) vs background

• Output is “optimal” observable to measure theory parameters using a maximum likelihood fit over 

several bins of histogram

CHAPTER 7. LIKELIHOOD-FREE INFERENCE

study, discuss how this strategy can be adapted for a signal strength measurement, and outline
dataset production setup. Finally it will present some very promising results for a simplified
problem (without accounting for background events coming from gg and qq̄ initial states, and
using Delphes for detector simulation) and discuss the future prospects within ATLAS.

7.1 The troubles that come with quantum interference
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Figure 9. Distributions of the BDT discriminants for the data taken at
�

s = 8 TeV in the signal
regions of the VBF (left) and boosted (right) categories for the �lep�lep (top), �lep�had (middle),
and �had�had (bottom) channels. The Higgs boson signal (mH = 125 GeV) is shown stacked with
a signal strength of µ = 1 (dashed line) and µ = 1.4 (solid line). The background predictions
are determined in the global fit (that gives µ = 1.4). The size of the statistical and systematic
normalisation uncertainties is indicated by the hashed band. The ratios of the data to the model
(background plus Higgs boson contributions with µ = 1.4) are shown in the lower panels. The
dashed red and the solid black lines represent the changes in the model when µ = 1.0 or µ = 0 are
assumed respectively.

– 37 –

Figure 7.1 – Example of an ATLAS signal strength measurement: Distribution of a BDT
discriminant for data taken at

Ô
s = 8 TeV in the signal region of the VBF category for the

H æ ·had·had channel. [125]

In a traditional signal strength (µ) measurement analysis where quantum interference plays no
role, one can simulate the signal and background samples separately. The number of expected
events is a linear function of µ. One can then train a machine learning classifier (such as a
Boosted Decision Tree) to separate the signal and background samples and perform a parameter
estimation fit on the distribution of the score when the model is applied to real data recorded by
the detector (an example of such a fit is shown in Figure 7.1 from the ATLAS H æ ·· analysis
from Run1). Neglecting systematics, and under the assumption that it is an optimal classifier,
this is the most precise measurement one can possibly perform. The expected number of events
is simply linear in µ (Nexp = µS + B, where S is the signal yield and B is the background
yield for the SM), and there is no need to train the model on separate datasets to be optimal to
di�erent possible true values of µ in nature. The mathematical reasoning for this is discussed
in Chapter 4.

In the presence of quantum interference, this strategy is no longer optimal. The expected number
of events is no longer linear in µ, but follows the equation,

Nexp = µS + Ô
µI + B, (7.1)

158

Compare various simulations to data to find best fit

1501.04943

https://arxiv.org/abs/1501.04943


Decorrelating classifier from Z

We sacrifice separation power for an unbiased classifier, expecting this reduces systematic 
uncertainty on final result


Great idea for original use case described in paper, but has since become a popular for all kinds of 
systematic uncertainties


We question the appropriateness of these techniques for theoretical uncertainties

Similar ideas: 1905.10384, 
1305.7248, 1907.11674,


epjconf_chep2018_06024
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https://arxiv.org/pdf/1905.10384.pdf
https://arxiv.org/abs/1305.7248
https://arxiv.org/pdf/1907.11674.pdf
https://www.epj-conferences.org/articles/epjconf/abs/2019/19/epjconf_chep2018_06024/epjconf_chep2018_06024.html


What are ‘theory uncertainties’ in HEP ?

13

Theory uncertainties often describe our lack of understanding / 
ability to simulate

result of approximations when performing calculations and are also due to parameter free-

dom in phenomenological models that are needed when first-principles calculations are not

possible. The canonical examples for these two types of uncertainties are perturbative

uncertainties from series truncation and fragmentation modeling. For the former, calcu-

lations are truncated at a fixed order in perturbation theory and the result depends on

unphysical scales. These scales are varied typically by factors of two in order to determine

the uncertainty. Fragmentation modeling uncertainties are often evaluated by comparing

two di↵erent models, such as the string model [29, 30] in the Pythia [31, 32] parton shower

Monte Carlo (PSMC) and the cluster model [33, 34] in the Herwig [35, 36] PSMC. These

variations are then interpreted as a one standard deviation uncertainty and combined with

other sources of uncertainty in a final statistical analysis.

We examine the interplay of decorrelation with theory uncertainties. In particular,

we will show that constructing a classifier that is independent of a given theory nuisance

parameter does not mean that the theory uncertainty is zero. Instead, it means that

the only handle to determine the theory uncertainty is eliminated. Figure 1 illustrates the

intuition behind why this might be the case. As concrete examples, we study fragmentation

modeling for Lorentz-boosted W boson jet classification and factorization scale variations

when classifying events as either from W+jets or t-channel single top quark events.

Pythia

Herwig

Sherpa

Next year’s 
generator

Nature

Estimated Uncertainty

Without Decorrelation

Pythia
Herwig

Sherpa

Next year’s 
generator

Nature

Estimated Uncertainty

With Decorrelation

Figure 1. An illustration of the potential impact of training a classifier to be decorrelated to
two-point uncertainties. The distance between Pythia and Herwig is treated as the uncertainty.
Left: Without decorrelation, the uncertainty covers nature even if nature does not lie on the line
connecting Pythia and Herwig. Right: The distance between Pythia and Herwig is reduced
due to the decorrelation requirement, resulting in a smaller estimate of the uncertainty, which no
longer covers nature. These diagrams are meant only to be intuitive illustrations.

This paper is organized as follows. Section 2 briefly introduces existing decorrela-

tion techniques. Numerical examples of both two-point and continuous uncertainties are

provided in Sec. 3. The paper ends with conclusions and outlook in Sec. 4.

– 2 –
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Eg. Hadronisation:


• Few different packages to simulate it


• None are correct!


• Use difference in performance of your data analysis 
algorithm on Pythia simulator vs Herwig simulator ad-hoc 
estimate of uncertainty


• These are just 2 random points in unexplored theory 
space (usually we can afford to have only 2 points)



Implications beyond HEP…?

14EPJC highlight article written about our work

Fact that of all my ML-for-physics work, this is the 
one that made it to a journal cover says something 
about how conservative larger community still is…?

Ghosh, A., Nachman, B. 
Eur. Phys. J. C 82, 46 

(2022)

https://www.epj.org/epjc-news/2302-epjc-highlight-a-cautionary-tale-of-machine-learning-uncertainty
https://link.springer.com/article/10.1140/epjc/s10052-022-10012-w
https://link.springer.com/article/10.1140/epjc/s10052-022-10012-w
https://link.springer.com/article/10.1140/epjc/s10052-022-10012-w
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Implications for decorrelating biases in gender / 
race / age …? What are the unintended 

consequences?
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Outlook for uncertainties and ML

• It is tempting to apply ML decorrelation to reduce uncertainties


• When source of uncertainty well understood: Uncertainty-Aware Networks do a 
better job (but decorrelation may be simpler)


• When source of uncertainty not well understood: caution must be taken before 
applying any domain adaptation techniques
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Systematic Uncertainties

Imagine a metal ruler calibrated at room temperature but used at near 0 K 


Experimental physics example: Calibration of some energy scale

Image: https://www.shutterstock.com/image-photo/measuring-
stick-snow-ruler-shows-amount-1896983614
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Theory example: Fragmentation modelling not yet precise → every generator 
models it a bit differently and simulates something slightly different 
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connecting Pythia and Herwig. Right: The distance between Pythia and Herwig is reduced
due to the decorrelation requirement, resulting in a smaller estimate of the uncertainty, which no
longer covers nature. These diagrams are meant only to be intuitive illustrations.

This paper is organized as follows. Section 2 briefly introduces existing decorrela-

tion techniques. Numerical examples of both two-point and continuous uncertainties are

provided in Sec. 3. The paper ends with conclusions and outlook in Sec. 4.

– 2 –
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• Different from model uncertainties → A more powerful ML model won’t 
help reduce these uncertainties


• Different from data uncertainties → More training data won’t help 
reduce these uncertainties
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FIG. 3: Cross section observable and jet-transverse momentum distribution in h + 2 jets production for an operator choice
(cg, ct) = (�0.6, 27). For further details see text.

(a) (b)

FIG. 4: Distribution of NN scores (a) and associated ROC curve (b) for background-only and signal + background event
samples. The classification has been performed using only the discriminator. If the area under curve (AUC) is larger than 0.5,
discrimination is possible.

and TensorFlow [79]. The classifier has one output
node with a softmax activation function, i.e. the output
is a scalar 2 [0, 1] where ”0” represents the SM class and
”1” the signal class. The classifier output is fed directly
into the adversary input. The adversary is trained to de-
termine the scale choice only from the classifier output.
Hence, the adversary has one output node with a linear
activation function representing the adversary’s predic-
tion of the chosen scale.

To perform the adversarial training, we consider a com-
bined loss function consisting of the classifier loss and the
adversary loss. The loss function of the classifier is de-
fined by the binary cross-entropy. The adversarial loss
function is defined as a mean squared error regression
of the scale. The total loss function is constructed such

that the classifier loss contributes positively and the ad-
versarial loss negatively. Hence, the adversarial interplay
works as follows: With decreasing ability of the adver-
sary to determine the scale from the classifier output the
adversary loss grows. Since it contributes negatively the
total loss decreases. The training goal is to minimise the
total loss function and therefore the classifier is forced to
modify its output such as to minimise the ability of the
adversary to distinguish between the scales. This results
in a classifier which is insensitive to the scale choice of
the input data.
Two architectures exist to perform adversarial train-

ing. An approach where the training of classifier and
adversary is performed simultaneously and another with
alternating training steps. For the alternating approach

Adversarial 
Training
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(a) (b)

FIG. 5: Same as Fig. 4 but here the distributions were obtained by a classifier that had been trained using the adversarial
setup. If the area under curve (AUC) is larger than 0.5, discrimination is possible.

the training is also performed on the entire adversarial
neural network consisting of classifier and adversary. But
in one step the adversary weights are frozen and the to-
tal loss function is used. In the other step the classifier
weights are frozen and only the adversary loss function is
used. Hence, one step trains the classifier taking the ad-
versary penalty into account and the other step trains the
adversary only thus adapting the adversary to the pre-
viously trained classifier. These two steps are performed
alternating on each batch of training data.

We tried both approaches (simultaneous and alternat-
ing training), but we found better convergence with the
alternating adversary and consequently focused on this
approach for this study. For the full NN architecture
and training we required:

• for the “classification layer” 2 hidden layers with
20 nodes each,

• for the “adversary layer” 2 hidden layers with 20
nodes each,

• in all cases Relu activation function, and

• we use a batch size of 500 events trained over 500
epochs.

We have tried other configurations in terms of numbers of
layers and nodes but did not observe a significant change
in the training performance. However, hyperparameters
such as learning rate (5⇥ 10�4), relative weight between
classifier and adversary loss as well as the number of
epochs had to be tuned. To ensure convergence of the
adversary, the cross section, jet pT and any other tested
variables are transformed to have mean zero. The trans-
formation of the cross section is adjusted to have root
mean square (RMS) 1, whereas the other variables are
transformed to have an RMS of 100. This additional

transformation is needed because the scale variation of
the adversary and the discrimination power are both
dominated by variations in the cross section. To per-
form the adversarial training the adversary loss is scaled
by a factor of 100 relative the loss of the EFT classifier.
When the adversary is reduced below 100, for all cases,
we observed a gradual transition to the instance where
the adversary is non-existent; eventually converging to
the bare discrimination case. We use ⇠ 2.5 � 4 ⇥ 105

events for signal and background depending on the choice
of the parameters cg and ct. 90% of the events are used
for training and 10% are reserved for validation and test-
ing.

B. Example

To highlight the crucial features of our method, we
first consider a simple example for which we use our nu-
merical setup given in Sec. II focusing on the h+2 jets
channel. For illustration purposes we only consider two
input variables in this example: the normalised di↵er-
ential pT distribution and the associated cross section
(see Fig. 3). The use of additional variables is studied
in Sec. III C. The choice of cg = �0.6, ct = 0.27 is mo-
tivated by the shape of the pT distribution which needs
to be contrasted with the overlapping uncertainty bands
for the cross sections. We train the NN with background
and signal distributions of events defined by the trans-
verse momentum of the leading jet pT,j1 as shown on the
right-hand side of Fig. 3. The background distributions
for all three scale choices in Eq. (4) are combined into
one distribution. For the signal we use the central scale
(µ0) distribution. We have checked that the events from
pT,j1 distributions of di↵erent scales choices produce the
same neural network output. The reason is that the NN
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FIG. 6: Performance comparison of the (A)NN using
Higgs+multijet final states. For details see text.

quiring at least 2 (1) expected SM events in the h+jet
(h+2 jets) selection region detailed above for a given lu-
minosity. We treat the two regions as uncorrelated. No
additional parton-level cuts are employed.

The result is shown in Fig. 6 as a function of the dis-
tance from the (cg, ct) blind direction for a luminosity of
100/fb. There, we also compare the ANN performance to
a neural net analyses without the inclusion of the adver-
sary. In the latter case, di↵erent scale choices will result
in a di↵erent NN score. By tracing the influence of the µ-
dependence of the NN score through to the significance,
a variation of exclusion can be assigned an uncertainty
represented by the blue error bar.

As can be seen from Fig. 6, there are di↵erent pos-
sible outcomes, but an exclusion at the 68% confidence
level should be possible for the region close to the SM. In
some cases the ANN limit agrees well with the lower end
of the expected significance as one could naively expect.
This situation corresponds to an ANN score that inter-
polates between maximum and minimum discrimination
within the uncertainty bands of the fully di↵erential cross
sections. Given that the ANN pivots as a result of the
uncertainties, it will always be less sensitive than the
NN output. The lower NN sensitivity as a function of µ
therefore provides a supremum of the ANN’s sensitivity.

There are also more interesting situations, in partic-
ular when we approach the blind direction. While the
NN score without adversary becomes sensitive to phase
space regions that are not under perturbative control,
the ANN will not show any sensitivity in this particu-
lar region of phase space. This leads the ANN to push
its region of discrimination to a more exclusive region of
phase space where the relative impact of the uncertainty
is smaller compared to the new physics deviation. In
turn, this then manifests itself as a smaller total discrim-
inating power, well outside the naive uncertainty expec-
tation of the NN score without adversary. This robust-
ness is a clear benefit of the adversarial network and is
the main result of this analysis. As expected, this e↵ect

becomes most relevant when we approach the blind di-
rection. New physics events with cg ⇠

p
2ct/3 will be

distributed more closely to the SM expectation across
the considered phase-space. Scale uncertainties render
the ANN “blind” to small kinematical deviations within
the associated uncertainty bands, thereby decreasing the
overall sensitivity significantly. Including a proper treat-
ment of kinematic uncertainties, as provided by the ANN
is therefore crucial to obtaining robust and reliable con-
straints that inform a new physics question, which in
this example is represented by the relevance of the top
threshold for new heavy BSM.

IV. SUMMARY AND CONCLUSIONS

Theoretical and experimental uncertainties are the key
limiting factors in searches for new interactions at the
LHC and future colliders. This is dramatically high-
lighted when we want to constrain non-resonant exten-
sions of the Standard Model, where large momentum
transfers and very exclusive regions of phase space are
the most sensitive probes of new physics. Experimen-
tal sensitivities are usually good when we deal with hard
final state objects. Unfortunately, outside the inclusive
realm of perturbative QCD, theoretical control in highly
selective regions of phase space is often lost or at least
significantly degraded.
There is no first principle way of correctly assessing the

associated theoretical uncertainties apart from ad-hoc
scale variations of unphysical remnant scales. Process-
dependent QCD-educated guesses for such choices might
exist, but these do not come with guarantees, in particu-
lar, when we deal with the multi-parton and multi-scale
problems imposed by hadron collider phenomenology.
In this paper, we have addressed this conundrum by

building on recent developments in machine learning,
specifically in the area of adversarial neural networks.
While ad-hoc scale choices have to remain as estima-

tors of the theoretically unknown, the response of Monte
Carlo data to such choices can be propagated to the kine-
matics of the full final state. In phase space regions where
the a priori-sensitivity to new physics is large but e↵ec-
tively obstructed by uncertainties, no sensitivity should
be claimed. These regions, which also depend on the
particular type of uncertainty, are process-specific and
are not necessarily aligned nor connected with our stan-
dard understanding of collider kinematics. This large
variation in conditions is most naturally addressed with
neural networks.
Using the particular case of jet-associated Higgs pro-

duction at the LHC, where large momentum transfers
can pinpoint di↵erent sources of new physics in the Higgs
sector, we have demonstrated that uncertainties can be
accounted for in the discrimination. Additionally we have
shown that “standard” approaches to select new physics
can be sensitive to uncertainties and typically the sensi-
tivity is over-estimated, in some cases severely. An ac-

“Smaller 
errors”
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FIG. 3: Cross section observable and jet-transverse momentum distribution in h + 2 jets production for an operator choice
(cg, ct) = (�0.6, 27). For further details see text.

(a) (b)

FIG. 4: Distribution of NN scores (a) and associated ROC curve (b) for background-only and signal + background event
samples. The classification has been performed using only the discriminator. If the area under curve (AUC) is larger than 0.5,
discrimination is possible.

and TensorFlow [79]. The classifier has one output
node with a softmax activation function, i.e. the output
is a scalar 2 [0, 1] where ”0” represents the SM class and
”1” the signal class. The classifier output is fed directly
into the adversary input. The adversary is trained to de-
termine the scale choice only from the classifier output.
Hence, the adversary has one output node with a linear
activation function representing the adversary’s predic-
tion of the chosen scale.

To perform the adversarial training, we consider a com-
bined loss function consisting of the classifier loss and the
adversary loss. The loss function of the classifier is de-
fined by the binary cross-entropy. The adversarial loss
function is defined as a mean squared error regression
of the scale. The total loss function is constructed such

that the classifier loss contributes positively and the ad-
versarial loss negatively. Hence, the adversarial interplay
works as follows: With decreasing ability of the adver-
sary to determine the scale from the classifier output the
adversary loss grows. Since it contributes negatively the
total loss decreases. The training goal is to minimise the
total loss function and therefore the classifier is forced to
modify its output such as to minimise the ability of the
adversary to distinguish between the scales. This results
in a classifier which is insensitive to the scale choice of
the input data.
Two architectures exist to perform adversarial train-

ing. An approach where the training of classifier and
adversary is performed simultaneously and another with
alternating training steps. For the alternating approach
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FIG. 5: Same as Fig. 4 but here the distributions were obtained by a classifier that had been trained using the adversarial
setup. If the area under curve (AUC) is larger than 0.5, discrimination is possible.

the training is also performed on the entire adversarial
neural network consisting of classifier and adversary. But
in one step the adversary weights are frozen and the to-
tal loss function is used. In the other step the classifier
weights are frozen and only the adversary loss function is
used. Hence, one step trains the classifier taking the ad-
versary penalty into account and the other step trains the
adversary only thus adapting the adversary to the pre-
viously trained classifier. These two steps are performed
alternating on each batch of training data.

We tried both approaches (simultaneous and alternat-
ing training), but we found better convergence with the
alternating adversary and consequently focused on this
approach for this study. For the full NN architecture
and training we required:

• for the “classification layer” 2 hidden layers with
20 nodes each,

• for the “adversary layer” 2 hidden layers with 20
nodes each,

• in all cases Relu activation function, and

• we use a batch size of 500 events trained over 500
epochs.

We have tried other configurations in terms of numbers of
layers and nodes but did not observe a significant change
in the training performance. However, hyperparameters
such as learning rate (5⇥ 10�4), relative weight between
classifier and adversary loss as well as the number of
epochs had to be tuned. To ensure convergence of the
adversary, the cross section, jet pT and any other tested
variables are transformed to have mean zero. The trans-
formation of the cross section is adjusted to have root
mean square (RMS) 1, whereas the other variables are
transformed to have an RMS of 100. This additional

transformation is needed because the scale variation of
the adversary and the discrimination power are both
dominated by variations in the cross section. To per-
form the adversarial training the adversary loss is scaled
by a factor of 100 relative the loss of the EFT classifier.
When the adversary is reduced below 100, for all cases,
we observed a gradual transition to the instance where
the adversary is non-existent; eventually converging to
the bare discrimination case. We use ⇠ 2.5 � 4 ⇥ 105

events for signal and background depending on the choice
of the parameters cg and ct. 90% of the events are used
for training and 10% are reserved for validation and test-
ing.

B. Example

To highlight the crucial features of our method, we
first consider a simple example for which we use our nu-
merical setup given in Sec. II focusing on the h+2 jets
channel. For illustration purposes we only consider two
input variables in this example: the normalised di↵er-
ential pT distribution and the associated cross section
(see Fig. 3). The use of additional variables is studied
in Sec. III C. The choice of cg = �0.6, ct = 0.27 is mo-
tivated by the shape of the pT distribution which needs
to be contrasted with the overlapping uncertainty bands
for the cross sections. We train the NN with background
and signal distributions of events defined by the trans-
verse momentum of the leading jet pT,j1 as shown on the
right-hand side of Fig. 3. The background distributions
for all three scale choices in Eq. (4) are combined into
one distribution. For the signal we use the central scale
(µ0) distribution. We have checked that the events from
pT,j1 distributions of di↵erent scales choices produce the
same neural network output. The reason is that the NN

and 20. A large di�erence between source and target domain feature extractor response density can
be observed for _ = 0, while with increasing values of _ the influence of the domain classifier on
the density alignment and consequently also on label prediction increases and finally a very strong
agreement between feature extractor responses to both background samples is reached at the highest
value of _, while label predictor performance deteriorates. The optimal lambda value is specific to
the problem and the performance measure applied as will be discussed in the following.
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Figure 4: Label predictor response to signal (blue) and background (orange) for di�erent values of
_. The label predictor is trained on the source domain and applied to a statistically independent part
of the source domain (lines) and the target domain (area). Each of the distribution is normalized to
1. (a) _ = 0 (b) _ = 0.58 (c) _ = 1.5 ( d) _ = 20 . Discussion see text.

5 Results

The performance of the network depends on the relative importance of the adversarial branch
containing domain classifier steered by the parameter _. As for any hyper-parameter, the values of
_ are specific to the network architecture and data sets used and need to be determined for each
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FIG. 6: Performance comparison of the (A)NN using
Higgs+multijet final states. For details see text.

quiring at least 2 (1) expected SM events in the h+jet
(h+2 jets) selection region detailed above for a given lu-
minosity. We treat the two regions as uncorrelated. No
additional parton-level cuts are employed.

The result is shown in Fig. 6 as a function of the dis-
tance from the (cg, ct) blind direction for a luminosity of
100/fb. There, we also compare the ANN performance to
a neural net analyses without the inclusion of the adver-
sary. In the latter case, di↵erent scale choices will result
in a di↵erent NN score. By tracing the influence of the µ-
dependence of the NN score through to the significance,
a variation of exclusion can be assigned an uncertainty
represented by the blue error bar.

As can be seen from Fig. 6, there are di↵erent pos-
sible outcomes, but an exclusion at the 68% confidence
level should be possible for the region close to the SM. In
some cases the ANN limit agrees well with the lower end
of the expected significance as one could naively expect.
This situation corresponds to an ANN score that inter-
polates between maximum and minimum discrimination
within the uncertainty bands of the fully di↵erential cross
sections. Given that the ANN pivots as a result of the
uncertainties, it will always be less sensitive than the
NN output. The lower NN sensitivity as a function of µ
therefore provides a supremum of the ANN’s sensitivity.

There are also more interesting situations, in partic-
ular when we approach the blind direction. While the
NN score without adversary becomes sensitive to phase
space regions that are not under perturbative control,
the ANN will not show any sensitivity in this particu-
lar region of phase space. This leads the ANN to push
its region of discrimination to a more exclusive region of
phase space where the relative impact of the uncertainty
is smaller compared to the new physics deviation. In
turn, this then manifests itself as a smaller total discrim-
inating power, well outside the naive uncertainty expec-
tation of the NN score without adversary. This robust-
ness is a clear benefit of the adversarial network and is
the main result of this analysis. As expected, this e↵ect

becomes most relevant when we approach the blind di-
rection. New physics events with cg ⇠

p
2ct/3 will be

distributed more closely to the SM expectation across
the considered phase-space. Scale uncertainties render
the ANN “blind” to small kinematical deviations within
the associated uncertainty bands, thereby decreasing the
overall sensitivity significantly. Including a proper treat-
ment of kinematic uncertainties, as provided by the ANN
is therefore crucial to obtaining robust and reliable con-
straints that inform a new physics question, which in
this example is represented by the relevance of the top
threshold for new heavy BSM.

IV. SUMMARY AND CONCLUSIONS

Theoretical and experimental uncertainties are the key
limiting factors in searches for new interactions at the
LHC and future colliders. This is dramatically high-
lighted when we want to constrain non-resonant exten-
sions of the Standard Model, where large momentum
transfers and very exclusive regions of phase space are
the most sensitive probes of new physics. Experimen-
tal sensitivities are usually good when we deal with hard
final state objects. Unfortunately, outside the inclusive
realm of perturbative QCD, theoretical control in highly
selective regions of phase space is often lost or at least
significantly degraded.
There is no first principle way of correctly assessing the

associated theoretical uncertainties apart from ad-hoc
scale variations of unphysical remnant scales. Process-
dependent QCD-educated guesses for such choices might
exist, but these do not come with guarantees, in particu-
lar, when we deal with the multi-parton and multi-scale
problems imposed by hadron collider phenomenology.
In this paper, we have addressed this conundrum by

building on recent developments in machine learning,
specifically in the area of adversarial neural networks.
While ad-hoc scale choices have to remain as estima-

tors of the theoretically unknown, the response of Monte
Carlo data to such choices can be propagated to the kine-
matics of the full final state. In phase space regions where
the a priori-sensitivity to new physics is large but e↵ec-
tively obstructed by uncertainties, no sensitivity should
be claimed. These regions, which also depend on the
particular type of uncertainty, are process-specific and
are not necessarily aligned nor connected with our stan-
dard understanding of collider kinematics. This large
variation in conditions is most naturally addressed with
neural networks.
Using the particular case of jet-associated Higgs pro-

duction at the LHC, where large momentum transfers
can pinpoint di↵erent sources of new physics in the Higgs
sector, we have demonstrated that uncertainties can be
accounted for in the discrimination. Additionally we have
shown that “standard” approaches to select new physics
can be sensitive to uncertainties and typically the sensi-
tivity is over-estimated, in some cases severely. An ac-
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Case Study 2: Continuous uncertainty (Higher-order corrections)

• Uncertainty from truncating order of perturbative calculation (QFT) is estimated by varying 
scales (renormalization scale, factorisation scale) and looking at the change in result


• For example NLO + scale variations to estimate uncertainty for NNLO

• Scale usually varied between 1/2 to 2 to estimate uncertainty - no deep physics reason 

for it

• We focus on factorisation scale - dictates separation bw long and short distance physics
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Case Study 1: Two-point uncertainty (fragmentation modelling)

Figure 2. The seven inputs used to train a classifier to distinguish boosted W boson jets from
generic QCD jets events.

focus on the region near 10-15% signal e�ciency, which is a typical working point for LHC

analyses. In this range, the background rejection (inverse QCD e�ciency) is between a few

hundred and a few thousand.

A second network is trained as part of an adversarial approach. This second network

uses both Pythia and Herwig events and minimizes the following loss:
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where yi = 0 for W jets and yi = 1 for QCD jets. Furthermore, � = 10. Note that

unlike Eq. 2.1, Eq. 3.1 has the labels as part of the function for the adversary. This means
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Figure 2. The seven inputs used to train a classifier to distinguish boosted W boson jets from
generic QCD jets events.
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Goal: W jets vs QCD jets

Decorrelation: Reduce difference in performance on Herwig vs Pythia


Cross-check: Test uncertainty estimate from {Herwig vs Pythia} using Sherpa
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Case Study 1: Two-point uncertainty - Result

Figure 3. The QCD rejection (inverse QCD e�ciency) as a function of the W jet e�ciency for
classifiers applied to Pythia, Herwig, and Sherpa jets. The solid lines correspond to the nominal
classifier trained with Pythia while the dotted lines correspond to the adversarial setup that uses
both Pythia and Herwig. The bottom panel shows the relative absolute di↵erence with respect
to Pythia (nominal or adversarial, as appropriate). Note that the lower panel has a logarithmic
vertical axis. While adversarial training reduces the di↵erence in performance between Pythia and
Herwig, the di↵erence to Sherpa remains large, indicating that the the true uncertainty will be
underestimated if a third independent sample is unavailable.

clustering, implemented using FastJet 3.2.1 [54, 72] and the anti-kt algorithm [55] with

radius parameter R = 0.5. For simplicity, W bosons are forced to decay into muons and

events are required to have at least one isolated and identified muon using the default

reconstruction algorithm in Delphes. Usually, one uses the highest precision method

possible and then scale variations give the uncertainty from the finite truncation of the

perturbative series. In order to compare with the ‘true’ uncertainty, we artificially truncate

the series early and then use the higher-order calculation as the reference uncertainty. In

particular, the nominal simulation is performed at leading order (LO) in the strong coupling

constant and then an additional sample for the t-channel process is simulated at next-to-

leading order (NLO).

For the machine learning, events are represented by 12 numbers: the three-momentum

of the muon, the four-momentum of the leading two jets, and the scalar sum of the trans-

verse momenta of all jets (HT ). Momenta are specified by pT , ⌘, and �. Histograms for

each of the observables for single top t-channel and W+jets are shown in Fig. 4. The jet

pT spectra are harder for single top compared with W jets and the muons (jets) tend to

– 7 –

ROC curve (higher is better)
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Case Study 1: Two-point uncertainty - Result

Figure 3. The QCD rejection (inverse QCD e�ciency) as a function of the W jet e�ciency for
classifiers applied to Pythia, Herwig, and Sherpa jets. The solid lines correspond to the nominal
classifier trained with Pythia while the dotted lines correspond to the adversarial setup that uses
both Pythia and Herwig. The bottom panel shows the relative absolute di↵erence with respect
to Pythia (nominal or adversarial, as appropriate). Note that the lower panel has a logarithmic
vertical axis. While adversarial training reduces the di↵erence in performance between Pythia and
Herwig, the di↵erence to Sherpa remains large, indicating that the the true uncertainty will be
underestimated if a third independent sample is unavailable.

clustering, implemented using FastJet 3.2.1 [54, 72] and the anti-kt algorithm [55] with

radius parameter R = 0.5. For simplicity, W bosons are forced to decay into muons and

events are required to have at least one isolated and identified muon using the default

reconstruction algorithm in Delphes. Usually, one uses the highest precision method

possible and then scale variations give the uncertainty from the finite truncation of the

perturbative series. In order to compare with the ‘true’ uncertainty, we artificially truncate

the series early and then use the higher-order calculation as the reference uncertainty. In
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Case Study 1: Two-point uncertainty - Result

Figure 3. The QCD rejection (inverse QCD e�ciency) as a function of the W jet e�ciency for
classifiers applied to Pythia, Herwig, and Sherpa jets. The solid lines correspond to the nominal
classifier trained with Pythia while the dotted lines correspond to the adversarial setup that uses
both Pythia and Herwig. The bottom panel shows the relative absolute di↵erence with respect
to Pythia (nominal or adversarial, as appropriate). Note that the lower panel has a logarithmic
vertical axis. While adversarial training reduces the di↵erence in performance between Pythia and
Herwig, the di↵erence to Sherpa remains large, indicating that the the true uncertainty will be
underestimated if a third independent sample is unavailable.
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Case Study 2: Continuous uncertainty - Problem Setup

be more central (forward) for single top compared with W+jets.

Figure 4. The 12 inputs used to train a classifier to distinguish single top events from W+jets
events.

The impact of factorization scale variations is shown in Fig. 5. All variations are

normalized to unity, as the impact on the total cross section is not relevant for per-event

classification performance. As expected, the variation for all � observables is negligible and

the biggest variation occurs for the transverse momenta.

The default performance for a classifier trained to distinguish single top events from

W+jets events is shown in the top plot of Fig. 6. The W+rejection at a single top e�ciency

of 10% is about 75, with about 15% lower rejection when the single top is simulated at
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Figure 5. The impact of factorization scale variations by a factor of 1/2 and 2, in increments of
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Appendix - Case Study 1: Two-point Uncertainty 

Figure 2. The seven inputs used to train a classifier to distinguish boosted W boson jets from
generic QCD jets events.

focus on the region near 10-15% signal e�ciency, which is a typical working point for LHC

analyses. In this range, the background rejection (inverse QCD e�ciency) is between a few

hundred and a few thousand.

A second network is trained as part of an adversarial approach. This second network

uses both Pythia and Herwig events and minimizes the following loss:

L[f, g] =�

0

@
X

i2W
log(f(xi))�

X

i2QCD

log(1� f(xi))

1

A

+ �

0

@
X

i2Pythia
log(g(f(xi), yi))�

X

i2Herwig

log(1� g(f(xi), yi))

1

A , (3.1)

where yi = 0 for W jets and yi = 1 for QCD jets. Furthermore, � = 10. Note that

unlike Eq. 2.1, Eq. 3.1 has the labels as part of the function for the adversary. This means

– 5 –

A Training with � = 0

Figures 7 and 8 show the impact of using the adversarial setup, but with � = 0, i.e. the

adversary is turned o↵. The only di↵erence with respect to the nominal configuration is

that Pythia and Herwig (factorization scale variations) are used instead of just Pythia

(µ = 1) for the nominal for the two-point (continuous) uncertainty example.

Figure 7. ROC curves for the fragmentation modeling example (Sec. 3.1) with the nominal con-
figuration and for an adversary with � = 0. The lower panel is the absolute relative di↵erence for
each sample between the nominal and adversarial setup.

– 13 –
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Appendix - Case Study 2: Continuous Uncertainty 

Decorrelation parameter  

(Effectively data augmentation)

λ = 0

Figure 8. ROC curves for the t-channel single top example (Sec. 3.2) with the nominal configuration
and for an adversary with � = 0. The lower panel is the relative di↵erence for each sample between
the nominal and adversarial setup.

– 14 –

Figure 5. The impact of factorization scale variations by a factor of 1/2 and 2, in increments of
0.1 (lighter colors are lower scales).

continuous, the adversary is trained using the mean squared error:

L[f, g] =�
X

µ

"0

@
X

i2LO t-chan

wi(µ) log(f(xi))�
X

i2LO W+jets

wi(µ) log(1� f(xi))

1

A

+ �

X

i2LO t-chan

wi (g(f(xi), yi)� µ)2
#
, (3.2)

where µ is the relative factorization scale. For each event, we can vary the factorization

scale through per-event weights wi and we use values µ 2 {0.5, 0.6..., 1.9, 2} for each event.

– 9 –

be more central (forward) for single top compared with W+jets.

Figure 4. The 12 inputs used to train a classifier to distinguish single top events from W+jets
events.

The impact of factorization scale variations is shown in Fig. 5. All variations are

normalized to unity, as the impact on the total cross section is not relevant for per-event

classification performance. As expected, the variation for all � observables is negligible and

the biggest variation occurs for the transverse momenta.

The default performance for a classifier trained to distinguish single top events from

W+jets events is shown in the top plot of Fig. 6. The W+rejection at a single top e�ciency

of 10% is about 75, with about 15% lower rejection when the single top is simulated at

NLO. Similarly to the fragmentation modeling, an adversarial network is also trained to

reduce the sensitivity to factorization scale variations. Since the scale variation is now
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Nominal Classifier and Data Augmentation

• Baseline solution has been to train a classifier on nominal data (Z=1) and just account for uncertainties in 
measurement – which may be large. Full profile likelihood or shift Z and look at impact.
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• Baseline solution has been to train a classifier on nominal data (Z=1) and just account for uncertainties in 
measurement – which may be large. Full profile likelihood or shift Z and look at impact.

The classifier will learn some general characteristics, but will not be “optimal” for any particular value of Z
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Connection to domain adaptation: Adversarial Decorrelation

Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand and Lempitsky

MNIST Syn Numbers SVHN Syn Signs

Source

Target

MNIST-M SVHN MNIST GTSRB

Figure 6: Examples of domain pairs used in the experiments. See Section 5.2.4 for details.

Method
Source MNIST Syn Numbers SVHN Syn Signs

Target MNIST-M SVHN MNIST GTSRB

Source only .5225 .8674 .5490 .7900

SA (Fernando et al., 2013) .5690 (4.1%) .8644 (�5.5%) .5932 (9.9%) .8165 (12.7%)

DANN .7666 (52.9%) .9109 (79.7%) .7385 (42.6%) .8865 (46.4%)

Train on target .9596 .9220 .9942 .9980

Table 2: Classification accuracies for digit image classifications for di↵erent source and
target domains. MNIST-M corresponds to di↵erence-blended digits over non-
uniform background. The first row corresponds to the lower performance bound
(i.e., if no adaptation is performed). The last row corresponds to training on
the target domain data with known class labels (upper bound on the DA perfor-
mance). For each of the two DA methods (ours and Fernando et al., 2013) we
show how much of the gap between the lower and the upper bounds was covered
(in brackets). For all five cases, our approach outperforms Fernando et al. (2013)
considerably, and covers a big portion of the gap.

Method
Source Amazon DSLR Webcam

Target Webcam Webcam DSLR

GFK(PLS, PCA) (Gong et al., 2012) .197 .497 .6631

SA* (Fernando et al., 2013) .450 .648 .699

DLID (Chopra et al., 2013) .519 .782 .899

DDC (Tzeng et al., 2014) .618 .950 .985

DAN (Long and Wang, 2015) .685 .960 .990

Source only .642 .961 .978

DANN .730 .964 .992

Table 3: Accuracy evaluation of di↵erent DA approaches on the standard Office (Saenko
et al., 2010) data set. All methods (except SA) are evaluated in the “fully-
transductive” protocol (some results are reproduced from Long and Wang, 2015).
Our method (last row) outperforms competitors setting the new state-of-the-art.
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Learn only the relevant, transferable features from source, ignore background / colours


Uses a second network (adversary) to force invariance to background / colours

Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand and Lempitsky

Figure 1: The proposed architecture includes a deep feature extractor (green) and a deep
label predictor (blue), which together form a standard feed-forward architecture.
Unsupervised domain adaptation is achieved by adding a domain classifier (red)
connected to the feature extractor via a gradient reversal layer that multiplies
the gradient by a certain negative constant during the backpropagation-based
training. Otherwise, the training proceeds standardly and minimizes the label
prediction loss (for source examples) and the domain classification loss (for all
samples). Gradient reversal ensures that the feature distributions over the two
domains are made similar (as indistinguishable as possible for the domain classi-
fier), thus resulting in the domain-invariant features.

predictor and into the domain classifier (with loss weighted by �). The only di↵erence is
that in (13), the gradients from the class and domain predictors are subtracted, instead of
being summed (the di↵erence is important, as otherwise SGD would try to make features
dissimilar across domains in order to minimize the domain classification loss). Since SGD—
and its many variants, such as ADAGRAD (Duchi et al., 2010) or ADADELTA (Zeiler,
2012)—is the main learning algorithm implemented in most libraries for deep learning, it
would be convenient to frame an implementation of our stochastic saddle point procedure
as SGD.

Fortunately, such a reduction can be accomplished by introducing a special gradient
reversal layer (GRL), defined as follows. The gradient reversal layer has no parameters
associated with it. During the forward propagation, the GRL acts as an identity trans-
formation. During the backpropagation however, the GRL takes the gradient from the
subsequent level and changes its sign, i.e., multiplies it by �1, before passing it to the
preceding layer. Implementing such a layer using existing object-oriented packages for deep
learning is simple, requiring only to define procedures for the forward propagation (identity
transformation), and backpropagation (multiplying by �1). The layer requires no parame-
ter update.

The GRL as defined above is inserted between the feature extractor Gf and the domain
classifier Gd, resulting in the architecture depicted in Figure 1. As the backpropagation
process passes through the GRL, the partial derivatives of the loss that is downstream
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Adversarial decorrelation for physics

Eg. Pivot Adversarial Training to make classifier output invariant to nuisance parameter ‘Z’ (source of 
uncertainty)

Classifier f

X

✓f

f(X; ✓f )

Lf (✓f )

...

Adversary r

�1(f(X; ✓f ); ✓r)

�2(f(X; ✓f ); ✓r)

. . .

✓r

...

Z

p✓r (Z|f(X; ✓f ))

P(�1, �2, . . . )

Lr(✓f , ✓r)

Figure 1: Architecture for the adversarial training of a binary classifier f against a nuisance parameters Z. The
adversary r models the distribution p(z|f(X; ✓f ) = s) of the nuisance parameters as observed only through
the output f(X; ✓f ) of the classifier. By maximizing the antagonistic objective Lr(✓f , ✓r), the classifier f
forces p(z|f(X; ✓f ) = s) towards the prior p(z), which happens when f(X; ✓f ) is independent of the nuisance
parameter Z and therefore pivotal.

type of the nuisance parameter (discrete or continuous) or of its prior. Finally, we demonstrate the
effectiveness of the approach with a toy example and examples from particle physics.

2 Problem statement

We begin with a family of data generation processes p(X,Y, Z), where X 2 X are the data, Y 2 Y
are the target labels, and Z 2 Z are the nuisance parameters that can be continuous or categorical. Let
us assume that prior to incorporating the effect of uncertainty in Z, our goal is to learn a regression
function f : X ! S with parameters ✓f (e.g., a neural network-based probabilistic classifier) that
minimizes a loss Lf (✓f ) (e.g., the cross-entropy). In classification, values s 2 S = R|Y| correspond
to the classifier scores used for mapping hard predictions y 2 Y , while S = Y for regression.

We augment our initial objective so that inference based on f(X; ✓f ) will be robust to the value
z 2 Z of the nuisance parameter Z – which remains unknown at test time. A formal way of enforcing
robustness is to require that the distribution of f(X; ✓f ) conditional on Z (and possibly Y ) be
invariant with the nuisance parameter Z. Thus, we wish to find a function f such that

p(f(X; ✓f ) = s|z) = p(f(X; ✓f ) = s|z0) (1)

for all z, z0 2 Z and all values s 2 S of f(X; ✓f ). In words, we are looking for a predictive function
f which is a pivotal quantity with respect to the nuisance parameters. This implies that f(X; ✓f ) and
Z are independent random variables.

As stated in Eqn. 1, the pivotal quantity criterion is imposed with respect to p(X|Z) where Y is
marginalized out. In some situations however (see e.g., Sec. 5.2), class conditional independence of
f(X; ✓f ) on the nuisance Z is preferred, which can then be stated as requiring

p(f(X; ✓f ) = s|z, y) = p(f(X; ✓f ) = s|z0, y) (2)
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3 Method
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authors pit a generative model g : Rn ! Rp against an adversarial classifier d : Rp ! [0, 1] whose
antagonistic objective is to recognize real data X from generated data g(Z). Both models g and d are
trained simultaneously, in such a way that g learns to produce samples that are difficult to identify by
d, while d incrementally adapts to changes in g. At the equilibrium, g models a distribution whose
samples can be identified by d only by chance. That is, assuming enough capacity in d and g, the
distribution of g(Z) eventually converges towards the real distribution of X .
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output a score (see e.g. [50]),

s(x) =
p(x|z = z0, S)

p(x|z = z0, S) + p(x|z = z0, B)
, (1)

where

p(·) denotes a probability density, S represents the sig-
nal class and B represents the background class. The
score of the network is used as an observable with high
sensitivity to the parameter of interest for the final mea-
surement.

C. Data Augmentation

An alternative method is to augment the training data
to include signal and background samples with several
values of the nuisance parameters. A network trained
optimally to minimise a BCE loss learns the score,

s(x) =
hp(x|Z, S)ipZ

hp(x|Z, S)ipZ + hp(x|Z,B)ipZ

, (2)

where pZ is the probability density over the nuisance pa-
rameter Z, treated as a random variable with some prob-
ability density chosen by the experimenter. Typically, Z
is discrete and has a nonzero probability mass at only a
few values. The score s(x) is then treated in the same
way as in the baseline case (Eq. 1).

D. Adversarial Training

An orthogonal strategy is to train a classifier with the
explicit objective of being insensitive to the e↵ects of the
nuisance parameter. Our implementation follows the ad-
versarial training prescription of Ref. [12]. However, to
improve the training stability and speed, the classifier
and adversary are concatenated together through a gra-
dient reversal layer [51] and trained simultaneously. The
classifier is trained with the objective to minimize the
classification loss and maximise the adversarial loss and
the second loss has a relative weight of �, a tunable hyper-
parameter.

While training for exact invariance in this adversarial
setup can be tricky [52], maximizing overall sensitivity
requires a compromise between the level of invariance to
nuisance parameters and the classification power. The
Gaussian case described in Sec. IV is an extreme exam-
ple where exact invariance to the nuisance parameter re-
quires zero discriminating power for the classifier.

In the end, the score of the classifier on observed data
is used as an observable in the final measurement, in the
same way as for the baseline classifier.

E. Uncertainty-Aware Classifier

The concept explored in this paper is to parameter-
ize the network in the nuisance parameters; see Fig. 1.
Specifically, the network is trained with the true value
of the nuisance parameter z as an input to the network
in additional to the observables x. A network trained
optimally to minimise a BCE loss learns the score,

s(x, z) =
p(x|Z = z, S)

p(x|Z = z, S) + p(x|Z = z,B)
. (3)

The score of this classifier is not used as a single ob-
servable for the final fit as in the previous methods. At
evaluation time, while the x values remain fixed as inputs
to the network, the unknown z is left as a parameter, al-
lowing for later profiling over the nuisance parameters in
the final measurement.

Importantly, note that Eq. 3 depends on z. This means
that the calculation of analysis observable(s) depends on
z and change as the nuisance parameter is varied, during
the evaluation of uncertainties and/or during nuisance
parameter profiling. This is in contrast to the standard
search paradigm in which the calculation of the analysis
observables are fixed and the sensitivity to z is evaluated
post-hoc. Allowing the calculation of the analysis ob-
servables to depend explicitly on the value of z is not the
traditional approach, but it does not require that the ex-
perimenter have any special knowledge of z. Formation
of a confidence interval in the space of model parameters
(either parameters of interest or nuisance parameters)
naturally requires calculating the likelihood ratio of the
model as those parameters vary, relative to the best-fit
parameters. It is natural for the calculation of the anal-
ysis observable, a proxy for the likelihood ratio, to vary
with those parameters. One can later profile over the
nuisance parameters to capture the impact of our lack of
knowledge of its true value. The traditional approach of
fixing the analysis observable calculation can be thought
of as an ad-hoc approximation of the full method.

.	.
	.

3

z

x1
x2

f(x1, x2, . . . , z)

.	.
	.

.	.
	.

FIG. 1: The architecture of an uncertainty-aware
network, in which the nuisance parameter z is treated
as a feature alongside the observed data x, learning a

decision function which varies with the nuisance
parameter.
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III. EVALUATION METHODOLOGY

To evaluate the power of each approach above, we ap-
ply them to a common use case, fitting a signal hypothe-
sis in the presence of background, where both signal and
background depend on nuisance parameters. Relevant to
many measurements of Standard Model (SM) processes
as well as searches for physics beyond the SM, the param-
eter of interest is the signal strength µ, the cross section of
the signal relative to the reference value. In the Gaussian
example below, we use low-dimensional datasets for sim-
pler visualization, but the results generalize. Similarly,
for ease of calculations we perform a binned likelihood fit,
although the unbinned nature of neural networks should
allow application to unbinned cases; we leave that inves-
tigation to future work.

For each of the strategies described, template his-
tograms of the classifier score are constructed from sim-
ulated signal and background events for several values of
the nuisance parameter z. These templates are the basis
of the binned likelihood calculation L(µ, z|{xi}) over the
parameters µ, z, where {xi} is the full observed dataset.
The likelihood is a product of a Poisson term for each
histogram bin and a Gaussian constraint on the nuisance
parameter. The Gaussian constraint can readily be re-
placed with any other prior or a Poisson term from an
auxiliary measurement if z is directly constrained with
control region data (demonstrated in Appendix B). If no
additional prior or constraint on the nuisance parameter
is used then only information from the primary measure-
ment constrains z. The Negative Log-Likelihood (NLL)
is (up to an irrelevant constant),

� logL(µ, z|{xi})

= �
nbinsX

j=1


Nj · log (µsj + bj) � µsj � bj � log(�(Ni))

�

+

✓
z � z0p
2�z

◆2

, (4)

where sj , bj are the expected number of signal and back-
ground events in bin j, respectively, and Nj is the num-
ber of events observed in data for that bin. The � func-
tion is the generalized factorial function which can handle
decimal values in the simulated test dataset. Although
usually irrelevant, the log(�(Ni)) term is not a constant
while using an uncertainty-aware network and cannot be
ignored. For this approach, the decision function changes
with z and therefore the bin counts in simulation and ob-
served data also change with z.

In practice, samples at various values of z can often
be produced cheaply from a single simulated MC sample
by shifting the value of z and recomputing all the rel-
evant physics variables, and this approach will be used
for the studies in Sec. V. Care must be taken to apply
any kinematic selection on these variables only after the
shift. In these studies, the templates and the ‘observed
dataset’ are built using the same test dataset because the

dataset used in Sec. V is not large enough to split into
three representative datasets.

The fitted value of µ is obtained by minimizing Eq. 4.
Uncertainties are accounted for by studying the depen-
dence of the likelihood near the fitted value µ̂ while op-
timizing over z. The power of each approach is deter-
mined by their relative uncertainties in µ. As a diagnos-
tic, the parameter of interest may be profiled over instead
to check if the measurement over-constrains the nuisance
parameter.

IV. GAUSSIAN EXAMPLE

To illustrate the di↵erent approaches in a simple set-
ting with complete analytic control, we begin with a
Gaussian example with a two-dimensional feature space
and a single nuisance parameter. Signal events are drawn
from Gaussian distributions in the two features, with
means at cos (z) and sin (z), respectively; the width of
each is set to 0.7. Background events are generated in
same fashion, but with means for the two features at
� cos (z) and � sin (z) respectively. An example of the
signal and background distributions for z = ⇡

4 is shown
in Fig. 2.

A set of 4.2 ⇥ 107 events are generated at 21 values
of z equally spaced between 0 and ⇡/2. The dataset is
split into training and test sets with a ratio of 3:1. All
signal events in the test set have a weight of 10�3 and
all background events have a weight of 10�1 to mimic a
rare signal typical of LHC analyses. Ten bins are used
to construct the template and observed histograms. The
parameter of interest is the signal strength µ with a true
value of 1.

z = �/4

FIG. 2: Contour of probability densities for signal and
background hypotheses in the two-dimensional feature
space for the simple Gaussian demonstration case, with

the nuisance parameter fixed to z = ⇡
4 .
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A. Models

In a simple case where the signal and background prob-
abilities are well known, it is possible to derive the clas-
sifier analytically for the baseline and uncertainty-aware
approaches. The results below use the analytical expres-
sions, but as a cross check, neural networks were also
trained for the same objective and produced nearly iden-
tical results.

1. Baseline and Uncertainty-Aware Classifiers

The baseline classifier computes the score

s(x) =
p(x|z = ⇡

4 , S)

p(x|z = ⇡
4 , S) + p(x|z = ⇡

4 , B)
, (5)

using the the probability density functions for the Gaus-
sian distributions used to generate the two features for
signal and background at an assumed fixed value of
z = ⇡

4 .
The uncertainty-aware classifier, on the other hand,

does not make assumptions about the value of the nui-
sance parameter and instead calculates a score as a func-
tion of the nuisance parameter

s(x, z) =
p(x|Z = z, S)

p(x|Z = z, S) + p(x|Z = z,B)
. (6)

The score s, for the each of the two classifiers are shown
in Fig. 3 as a function of the input features, for datasets
generated with z = ⇡

4 or z = ⇡
2 . The uncertainty-aware

classifier is parameterized as a function of z, and given
the correct value of the nuisance parameter, it can pro-
vide the appropriate classifier. Examples of histogram
templates of the classifier outputs are shown in Fig. 4.
The separation power of the baseline classifier is clearly
reduced for cases where the data are generated with val-
ues of the nuisance parameter which do not match its as-
sumed value of z = ⇡

4 . Using the Area Under the Receiver
Operating Characteristic Curve as a metric to quantify
separation power of a model, the separation power for
the baseline classifier falls from 0.978 for data generated
at z = ⇡

4 to 0.924 for data generated at z = ⇡
2 , while it

remains 0.978 on both datasets for the uncertainty-aware
classifier.

2. Data Augmentation

A Linear Discriminant Analysis (LDA) classifier from
Scikit-Learn [53] is trained on a training dataset which
includes samples with all 21 values1 of z. As a cross

1 The data augmentation classifier was also trained on a dataset
with a continuous distribution of z sampled from the Gaussian
prior of z and found to provide near identical results.

(a) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
4

(b) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
2

(c) Uncertainty-aware,
evaluated at z = ⇡

4 , on data
where z = ⇡

4

(d) Uncertainty-aware,
evaluated at z = ⇡

2 , on data
generated with z = ⇡

2

FIG. 3: Classifier score for the baseline and
systematic-aware classifiers, see text for definitions.
Shown are examples where the baseline classifier’s
assumption that the nuisance parameter is z = ⇡

4
matches or disagrees with the generated data (points).

Also shown are score functions for the
uncertainty-aware classifier on the same datasets,
evaluated at the correct value of z for each dataset.

check, a neural network was trained on the same data
and produced a nearly identical score function.

3. Adversarial Training

The adversarial architecture was trained using samples
from all 21 values of z. The classifier and the adversarial
network each consist of 10 hidden layers with 64 nodes
and a rectified linear unit (ReLU) activation and a sin-
gle node output layer with sigmoid and linear activations
respectively. An L2 kernel regularizer [54] was applied
to all but the first and final layer of each network. The
two networks were attached with a gradient reversal layer
which scales the gradient by �0.2 and trained with the
RMSProp [55] optimizer and a batch size of 4096. BCE is
used as the classification loss while Mean Squared Error
(MSE) is used for the loss of the adversary. An adver-
sarial loss weight of � = 1 was used. For this dataset, a
classifier exactly invariant to z would have zero separa-
tion power between signal and background. Therefore, a
compromise between invariance and classification power
was made in model selection, finding the largest value of
� which did not deteriorate performance. Minimal hyper-
parameter tuning was performed beyond tuning �.
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A. Models

In a simple case where the signal and background prob-
abilities are well known, it is possible to derive the clas-
sifier analytically for the baseline and uncertainty-aware
approaches. The results below use the analytical expres-
sions, but as a cross check, neural networks were also
trained for the same objective and produced nearly iden-
tical results.
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s(x) =
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4 , S)

p(x|z = ⇡
4 , S) + p(x|z = ⇡
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, (5)

using the the probability density functions for the Gaus-
sian distributions used to generate the two features for
signal and background at an assumed fixed value of
z = ⇡

4 .
The uncertainty-aware classifier, on the other hand,

does not make assumptions about the value of the nui-
sance parameter and instead calculates a score as a func-
tion of the nuisance parameter

s(x, z) =
p(x|Z = z, S)

p(x|Z = z, S) + p(x|Z = z,B)
. (6)

The score s, for the each of the two classifiers are shown
in Fig. 3 as a function of the input features, for datasets
generated with z = ⇡

4 or z = ⇡
2 . The uncertainty-aware

classifier is parameterized as a function of z, and given
the correct value of the nuisance parameter, it can pro-
vide the appropriate classifier. Examples of histogram
templates of the classifier outputs are shown in Fig. 4.
The separation power of the baseline classifier is clearly
reduced for cases where the data are generated with val-
ues of the nuisance parameter which do not match its as-
sumed value of z = ⇡

4 . Using the Area Under the Receiver
Operating Characteristic Curve as a metric to quantify
separation power of a model, the separation power for
the baseline classifier falls from 0.978 for data generated
at z = ⇡

4 to 0.924 for data generated at z = ⇡
2 , while it

remains 0.978 on both datasets for the uncertainty-aware
classifier.

2. Data Augmentation

A Linear Discriminant Analysis (LDA) classifier from
Scikit-Learn [53] is trained on a training dataset which
includes samples with all 21 values1 of z. As a cross

1 The data augmentation classifier was also trained on a dataset
with a continuous distribution of z sampled from the Gaussian
prior of z and found to provide near identical results.

(a) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
4

(b) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
2

(c) Uncertainty-aware,
evaluated at z = ⇡

4 , on data
where z = ⇡

4

(d) Uncertainty-aware,
evaluated at z = ⇡

2 , on data
generated with z = ⇡

2

FIG. 3: Classifier score for the baseline and
systematic-aware classifiers, see text for definitions.
Shown are examples where the baseline classifier’s
assumption that the nuisance parameter is z = ⇡

4
matches or disagrees with the generated data (points).

Also shown are score functions for the
uncertainty-aware classifier on the same datasets,
evaluated at the correct value of z for each dataset.

check, a neural network was trained on the same data
and produced a nearly identical score function.

3. Adversarial Training

The adversarial architecture was trained using samples
from all 21 values of z. The classifier and the adversarial
network each consist of 10 hidden layers with 64 nodes
and a rectified linear unit (ReLU) activation and a sin-
gle node output layer with sigmoid and linear activations
respectively. An L2 kernel regularizer [54] was applied
to all but the first and final layer of each network. The
two networks were attached with a gradient reversal layer
which scales the gradient by �0.2 and trained with the
RMSProp [55] optimizer and a batch size of 4096. BCE is
used as the classification loss while Mean Squared Error
(MSE) is used for the loss of the adversary. An adver-
sarial loss weight of � = 1 was used. For this dataset, a
classifier exactly invariant to z would have zero separa-
tion power between signal and background. Therefore, a
compromise between invariance and classification power
was made in model selection, finding the largest value of
� which did not deteriorate performance. Minimal hyper-
parameter tuning was performed beyond tuning �.
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A. Models

In a simple case where the signal and background prob-
abilities are well known, it is possible to derive the clas-
sifier analytically for the baseline and uncertainty-aware
approaches. The results below use the analytical expres-
sions, but as a cross check, neural networks were also
trained for the same objective and produced nearly iden-
tical results.

1. Baseline and Uncertainty-Aware Classifiers

The baseline classifier computes the score

s(x) =
p(x|z = ⇡

4 , S)

p(x|z = ⇡
4 , S) + p(x|z = ⇡

4 , B)
, (5)

using the the probability density functions for the Gaus-
sian distributions used to generate the two features for
signal and background at an assumed fixed value of
z = ⇡

4 .
The uncertainty-aware classifier, on the other hand,

does not make assumptions about the value of the nui-
sance parameter and instead calculates a score as a func-
tion of the nuisance parameter

s(x, z) =
p(x|Z = z, S)

p(x|Z = z, S) + p(x|Z = z,B)
. (6)

The score s, for the each of the two classifiers are shown
in Fig. 3 as a function of the input features, for datasets
generated with z = ⇡

4 or z = ⇡
2 . The uncertainty-aware

classifier is parameterized as a function of z, and given
the correct value of the nuisance parameter, it can pro-
vide the appropriate classifier. Examples of histogram
templates of the classifier outputs are shown in Fig. 4.
The separation power of the baseline classifier is clearly
reduced for cases where the data are generated with val-
ues of the nuisance parameter which do not match its as-
sumed value of z = ⇡

4 . Using the Area Under the Receiver
Operating Characteristic Curve as a metric to quantify
separation power of a model, the separation power for
the baseline classifier falls from 0.978 for data generated
at z = ⇡

4 to 0.924 for data generated at z = ⇡
2 , while it

remains 0.978 on both datasets for the uncertainty-aware
classifier.

2. Data Augmentation

A Linear Discriminant Analysis (LDA) classifier from
Scikit-Learn [53] is trained on a training dataset which
includes samples with all 21 values1 of z. As a cross

1 The data augmentation classifier was also trained on a dataset
with a continuous distribution of z sampled from the Gaussian
prior of z and found to provide near identical results.

(a) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
4

(b) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
2

(c) Uncertainty-aware,
evaluated at z = ⇡

4 , on data
where z = ⇡

4

(d) Uncertainty-aware,
evaluated at z = ⇡

2 , on data
generated with z = ⇡

2

FIG. 3: Classifier score for the baseline and
systematic-aware classifiers, see text for definitions.
Shown are examples where the baseline classifier’s
assumption that the nuisance parameter is z = ⇡

4
matches or disagrees with the generated data (points).

Also shown are score functions for the
uncertainty-aware classifier on the same datasets,
evaluated at the correct value of z for each dataset.

check, a neural network was trained on the same data
and produced a nearly identical score function.

3. Adversarial Training

The adversarial architecture was trained using samples
from all 21 values of z. The classifier and the adversarial
network each consist of 10 hidden layers with 64 nodes
and a rectified linear unit (ReLU) activation and a sin-
gle node output layer with sigmoid and linear activations
respectively. An L2 kernel regularizer [54] was applied
to all but the first and final layer of each network. The
two networks were attached with a gradient reversal layer
which scales the gradient by �0.2 and trained with the
RMSProp [55] optimizer and a batch size of 4096. BCE is
used as the classification loss while Mean Squared Error
(MSE) is used for the loss of the adversary. An adver-
sarial loss weight of � = 1 was used. For this dataset, a
classifier exactly invariant to z would have zero separa-
tion power between signal and background. Therefore, a
compromise between invariance and classification power
was made in model selection, finding the largest value of
� which did not deteriorate performance. Minimal hyper-
parameter tuning was performed beyond tuning �.
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sions, but as a cross check, neural networks were also
trained for the same objective and produced nearly iden-
tical results.
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4 , S) + p(x|z = ⇡
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, (5)

using the the probability density functions for the Gaus-
sian distributions used to generate the two features for
signal and background at an assumed fixed value of
z = ⇡

4 .
The uncertainty-aware classifier, on the other hand,

does not make assumptions about the value of the nui-
sance parameter and instead calculates a score as a func-
tion of the nuisance parameter

s(x, z) =
p(x|Z = z, S)
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. (6)

The score s, for the each of the two classifiers are shown
in Fig. 3 as a function of the input features, for datasets
generated with z = ⇡

4 or z = ⇡
2 . The uncertainty-aware

classifier is parameterized as a function of z, and given
the correct value of the nuisance parameter, it can pro-
vide the appropriate classifier. Examples of histogram
templates of the classifier outputs are shown in Fig. 4.
The separation power of the baseline classifier is clearly
reduced for cases where the data are generated with val-
ues of the nuisance parameter which do not match its as-
sumed value of z = ⇡

4 . Using the Area Under the Receiver
Operating Characteristic Curve as a metric to quantify
separation power of a model, the separation power for
the baseline classifier falls from 0.978 for data generated
at z = ⇡

4 to 0.924 for data generated at z = ⇡
2 , while it

remains 0.978 on both datasets for the uncertainty-aware
classifier.

2. Data Augmentation

A Linear Discriminant Analysis (LDA) classifier from
Scikit-Learn [53] is trained on a training dataset which
includes samples with all 21 values1 of z. As a cross

1 The data augmentation classifier was also trained on a dataset
with a continuous distribution of z sampled from the Gaussian
prior of z and found to provide near identical results.

(a) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
4

(b) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
2

(c) Uncertainty-aware,
evaluated at z = ⇡

4 , on data
where z = ⇡
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(d) Uncertainty-aware,
evaluated at z = ⇡

2 , on data
generated with z = ⇡

2

FIG. 3: Classifier score for the baseline and
systematic-aware classifiers, see text for definitions.
Shown are examples where the baseline classifier’s
assumption that the nuisance parameter is z = ⇡

4
matches or disagrees with the generated data (points).

Also shown are score functions for the
uncertainty-aware classifier on the same datasets,
evaluated at the correct value of z for each dataset.

check, a neural network was trained on the same data
and produced a nearly identical score function.

3. Adversarial Training

The adversarial architecture was trained using samples
from all 21 values of z. The classifier and the adversarial
network each consist of 10 hidden layers with 64 nodes
and a rectified linear unit (ReLU) activation and a sin-
gle node output layer with sigmoid and linear activations
respectively. An L2 kernel regularizer [54] was applied
to all but the first and final layer of each network. The
two networks were attached with a gradient reversal layer
which scales the gradient by �0.2 and trained with the
RMSProp [55] optimizer and a batch size of 4096. BCE is
used as the classification loss while Mean Squared Error
(MSE) is used for the loss of the adversary. An adver-
sarial loss weight of � = 1 was used. For this dataset, a
classifier exactly invariant to z would have zero separa-
tion power between signal and background. Therefore, a
compromise between invariance and classification power
was made in model selection, finding the largest value of
� which did not deteriorate performance. Minimal hyper-
parameter tuning was performed beyond tuning �.
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classifier is parameterized as a function of z, and given
the correct value of the nuisance parameter, it can pro-
vide the appropriate classifier. Examples of histogram
templates of the classifier outputs are shown in Fig. 4.
The separation power of the baseline classifier is clearly
reduced for cases where the data are generated with val-
ues of the nuisance parameter which do not match its as-
sumed value of z = ⇡

4 . Using the Area Under the Receiver
Operating Characteristic Curve as a metric to quantify
separation power of a model, the separation power for
the baseline classifier falls from 0.978 for data generated
at z = ⇡

4 to 0.924 for data generated at z = ⇡
2 , while it

remains 0.978 on both datasets for the uncertainty-aware
classifier.

2. Data Augmentation

A Linear Discriminant Analysis (LDA) classifier from
Scikit-Learn [53] is trained on a training dataset which
includes samples with all 21 values1 of z. As a cross

1 The data augmentation classifier was also trained on a dataset
with a continuous distribution of z sampled from the Gaussian
prior of z and found to provide near identical results.

(a) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
4

(b) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
2

(c) Uncertainty-aware,
evaluated at z = ⇡

4 , on data
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(d) Uncertainty-aware,
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generated with z = ⇡
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FIG. 3: Classifier score for the baseline and
systematic-aware classifiers, see text for definitions.
Shown are examples where the baseline classifier’s
assumption that the nuisance parameter is z = ⇡

4
matches or disagrees with the generated data (points).

Also shown are score functions for the
uncertainty-aware classifier on the same datasets,
evaluated at the correct value of z for each dataset.

check, a neural network was trained on the same data
and produced a nearly identical score function.

3. Adversarial Training

The adversarial architecture was trained using samples
from all 21 values of z. The classifier and the adversarial
network each consist of 10 hidden layers with 64 nodes
and a rectified linear unit (ReLU) activation and a sin-
gle node output layer with sigmoid and linear activations
respectively. An L2 kernel regularizer [54] was applied
to all but the first and final layer of each network. The
two networks were attached with a gradient reversal layer
which scales the gradient by �0.2 and trained with the
RMSProp [55] optimizer and a batch size of 4096. BCE is
used as the classification loss while Mean Squared Error
(MSE) is used for the loss of the adversary. An adver-
sarial loss weight of � = 1 was used. For this dataset, a
classifier exactly invariant to z would have zero separa-
tion power between signal and background. Therefore, a
compromise between invariance and classification power
was made in model selection, finding the largest value of
� which did not deteriorate performance. Minimal hyper-
parameter tuning was performed beyond tuning �.
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A. Models

In a simple case where the signal and background prob-
abilities are well known, it is possible to derive the clas-
sifier analytically for the baseline and uncertainty-aware
approaches. The results below use the analytical expres-
sions, but as a cross check, neural networks were also
trained for the same objective and produced nearly iden-
tical results.

1. Baseline and Uncertainty-Aware Classifiers

The baseline classifier computes the score

s(x) =
p(x|z = ⇡

4 , S)

p(x|z = ⇡
4 , S) + p(x|z = ⇡

4 , B)
, (5)

using the the probability density functions for the Gaus-
sian distributions used to generate the two features for
signal and background at an assumed fixed value of
z = ⇡

4 .
The uncertainty-aware classifier, on the other hand,

does not make assumptions about the value of the nui-
sance parameter and instead calculates a score as a func-
tion of the nuisance parameter

s(x, z) =
p(x|Z = z, S)

p(x|Z = z, S) + p(x|Z = z,B)
. (6)

The score s, for the each of the two classifiers are shown
in Fig. 3 as a function of the input features, for datasets
generated with z = ⇡

4 or z = ⇡
2 . The uncertainty-aware

classifier is parameterized as a function of z, and given
the correct value of the nuisance parameter, it can pro-
vide the appropriate classifier. Examples of histogram
templates of the classifier outputs are shown in Fig. 4.
The separation power of the baseline classifier is clearly
reduced for cases where the data are generated with val-
ues of the nuisance parameter which do not match its as-
sumed value of z = ⇡

4 . Using the Area Under the Receiver
Operating Characteristic Curve as a metric to quantify
separation power of a model, the separation power for
the baseline classifier falls from 0.978 for data generated
at z = ⇡

4 to 0.924 for data generated at z = ⇡
2 , while it

remains 0.978 on both datasets for the uncertainty-aware
classifier.

2. Data Augmentation

A Linear Discriminant Analysis (LDA) classifier from
Scikit-Learn [53] is trained on a training dataset which
includes samples with all 21 values1 of z. As a cross

1 The data augmentation classifier was also trained on a dataset
with a continuous distribution of z sampled from the Gaussian
prior of z and found to provide near identical results.

(a) Baseline, assuming
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FIG. 3: Classifier score for the baseline and
systematic-aware classifiers, see text for definitions.
Shown are examples where the baseline classifier’s
assumption that the nuisance parameter is z = ⇡

4
matches or disagrees with the generated data (points).

Also shown are score functions for the
uncertainty-aware classifier on the same datasets,
evaluated at the correct value of z for each dataset.

check, a neural network was trained on the same data
and produced a nearly identical score function.

3. Adversarial Training

The adversarial architecture was trained using samples
from all 21 values of z. The classifier and the adversarial
network each consist of 10 hidden layers with 64 nodes
and a rectified linear unit (ReLU) activation and a sin-
gle node output layer with sigmoid and linear activations
respectively. An L2 kernel regularizer [54] was applied
to all but the first and final layer of each network. The
two networks were attached with a gradient reversal layer
which scales the gradient by �0.2 and trained with the
RMSProp [55] optimizer and a batch size of 4096. BCE is
used as the classification loss while Mean Squared Error
(MSE) is used for the loss of the adversary. An adver-
sarial loss weight of � = 1 was used. For this dataset, a
classifier exactly invariant to z would have zero separa-
tion power between signal and background. Therefore, a
compromise between invariance and classification power
was made in model selection, finding the largest value of
� which did not deteriorate performance. Minimal hyper-
parameter tuning was performed beyond tuning �.
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check, a neural network was trained on the same data
and produced a nearly identical score function.

3. Adversarial Training

The adversarial architecture was trained using samples
from all 21 values of z. The classifier and the adversarial
network each consist of 10 hidden layers with 64 nodes
and a rectified linear unit (ReLU) activation and a sin-
gle node output layer with sigmoid and linear activations
respectively. An L2 kernel regularizer [54] was applied
to all but the first and final layer of each network. The
two networks were attached with a gradient reversal layer
which scales the gradient by �0.2 and trained with the
RMSProp [55] optimizer and a batch size of 4096. BCE is
used as the classification loss while Mean Squared Error
(MSE) is used for the loss of the adversary. An adver-
sarial loss weight of � = 1 was used. For this dataset, a
classifier exactly invariant to z would have zero separa-
tion power between signal and background. Therefore, a
compromise between invariance and classification power
was made in model selection, finding the largest value of
� which did not deteriorate performance. Minimal hyper-
parameter tuning was performed beyond tuning �.
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In a simple case where the signal and background prob-
abilities are well known, it is possible to derive the clas-
sifier analytically for the baseline and uncertainty-aware
approaches. The results below use the analytical expres-
sions, but as a cross check, neural networks were also
trained for the same objective and produced nearly iden-
tical results.
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The baseline classifier computes the score
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, (5)

using the the probability density functions for the Gaus-
sian distributions used to generate the two features for
signal and background at an assumed fixed value of
z = ⇡

4 .
The uncertainty-aware classifier, on the other hand,

does not make assumptions about the value of the nui-
sance parameter and instead calculates a score as a func-
tion of the nuisance parameter

s(x, z) =
p(x|Z = z, S)

p(x|Z = z, S) + p(x|Z = z,B)
. (6)

The score s, for the each of the two classifiers are shown
in Fig. 3 as a function of the input features, for datasets
generated with z = ⇡

4 or z = ⇡
2 . The uncertainty-aware

classifier is parameterized as a function of z, and given
the correct value of the nuisance parameter, it can pro-
vide the appropriate classifier. Examples of histogram
templates of the classifier outputs are shown in Fig. 4.
The separation power of the baseline classifier is clearly
reduced for cases where the data are generated with val-
ues of the nuisance parameter which do not match its as-
sumed value of z = ⇡

4 . Using the Area Under the Receiver
Operating Characteristic Curve as a metric to quantify
separation power of a model, the separation power for
the baseline classifier falls from 0.978 for data generated
at z = ⇡

4 to 0.924 for data generated at z = ⇡
2 , while it

remains 0.978 on both datasets for the uncertainty-aware
classifier.

2. Data Augmentation

A Linear Discriminant Analysis (LDA) classifier from
Scikit-Learn [53] is trained on a training dataset which
includes samples with all 21 values1 of z. As a cross

1 The data augmentation classifier was also trained on a dataset
with a continuous distribution of z sampled from the Gaussian
prior of z and found to provide near identical results.
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B. Results

The negative log-likelihood (Eq. 4) is calculated as a
function of the parameter of interest µ and the nuisance
parameter z. Examples are shown in Fig. 5 using tem-
plates from the baseline and uncertainty-aware classifiers.
Due to its assumption that z = ⇡

4 in the calculation of the
classifier score, the likelihood from the baseline classifier
can strongly exclude z = ⇡

4 when evaluated on a dataset
generated with z = ⇡

2 , but finds z = 0, ⇡
2 equally likely.

The uncertainty-aware classifier, on the other hand, is
also able to exclude the low z region.

The measurement of the nuisance parameter is not the
final objective and it can be profiled away. The most
relevant metric for determining the relative power of the
various approaches is the profile likelihood, maxz L(µ, z).

The profile likelihood for each method is shown in
Fig. 6 for data generated with z = ⇡

4 and z = ⇡
2 . In the

case of z = ⇡
4 , which matches the assumption of the base-

line classifier, the uncertainty-aware and baseline classi-
fiers both achieve ideal performance. The adversarial and
data-augmentation approaches are somewhat weaker due
to the inherent compromises of their methods.

When evaluated on data generated with z = ⇡
2 ,

in conflict with the assumption of the baseline classi-
fier, the performance of all approaches other than the
uncertainty-aware classifier deteriorate significantly. The
data-augmented classifier has been trained on 21 values
of z in the first quadrant centred around the nominal
value which makes it perform worse at extreme values of
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FIG. 4: Template histograms of the classifier score for
the baseline (left) and uncertainty-aware approaches
(right) evaluated for data generated at various true

values of z. The signal distribution is shown in orange
and the background distribution in blue. The baseline
classifier assumes z = ⇡

4 , and loses separation power for
data generated with z = {0, ⇡

2 }, manifested by the lower
heights of the signal and background histograms near 1
and 0, respectively. The uncertainty-aware classifier
score is evaluated for the correct value of z, providing

the optimal score in each case.

z. No setting of the adversarially-trained classifier was
found to perform well for datasets with both values of z.

V. REALISTIC EXAMPLE

A more realistic application of the uncertainty-aware
classifier in the presence of nuisance parameters can be
performed using the datasets [56] produced for the Hig-
gsML Kaggle challenge [57] by the ATLAS Collaboration.
This dataset was originally simulated by the ATLAS col-
laboration to measure the decay of the Higgs boson to a
pair of ⌧ leptons [58]. This dataset was chosen for our
study because it has been used as a benchmark for un-
certainty aware learning in the past [52, 59].
The signal process is the production of Higgs bosons

through gluon-gluon fusion (ggF), vector boson fusion
(VBF), and associated production with a vector bo-
son (VH), which decay to pairs of ⌧ leptons. The
ggF and VBF production processes were simulated with
Powheg [60–63] interfaced to Pythia8 [27] while the
VH production is simulated with Pythia8. Further
details on corrections applied can be found in Sec 3.
of Ref. [58]. The detector response is simulated with
GEANT4 [64] and object reconstruction performed with

(a) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
4

(b) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
2

(c) Uncertainty-aware, on
data where z = ⇡

4

(d) Uncertainty-aware, on
data where z = ⇡

2

FIG. 5: The negative log-likelihood (Eq. 4) as a
function of the parameter of interest µ and the nuisance
parameter z for two example datasets, using templates
from the baseline (top) and uncertainty-aware classifier
(bottom). In the left column, the data are generated

with z = ⇡
4 , which matches the assumption made by the

baseline classifier. In the right column, the data are
generated with = ⇡

2 . The red dot indicates the
maximum likelihood estimate which coincides with the
true value of µ, z in each case. Note the di↵erent z-axis

scales for the two classifiers in the bottom row.
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parameter z. Examples are shown in Fig. 5 using tem-
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4 in the calculation of the
classifier score, the likelihood from the baseline classifier
can strongly exclude z = ⇡

4 when evaluated on a dataset
generated with z = ⇡

2 , but finds z = 0, ⇡
2 equally likely.

The uncertainty-aware classifier, on the other hand, is
also able to exclude the low z region.

The measurement of the nuisance parameter is not the
final objective and it can be profiled away. The most
relevant metric for determining the relative power of the
various approaches is the profile likelihood, maxz L(µ, z).

The profile likelihood for each method is shown in
Fig. 6 for data generated with z = ⇡
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case of z = ⇡
4 , which matches the assumption of the base-

line classifier, the uncertainty-aware and baseline classi-
fiers both achieve ideal performance. The adversarial and
data-augmentation approaches are somewhat weaker due
to the inherent compromises of their methods.

When evaluated on data generated with z = ⇡
2 ,

in conflict with the assumption of the baseline classi-
fier, the performance of all approaches other than the
uncertainty-aware classifier deteriorate significantly. The
data-augmented classifier has been trained on 21 values
of z in the first quadrant centred around the nominal
value which makes it perform worse at extreme values of
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FIG. 4: Template histograms of the classifier score for
the baseline (left) and uncertainty-aware approaches
(right) evaluated for data generated at various true

values of z. The signal distribution is shown in orange
and the background distribution in blue. The baseline
classifier assumes z = ⇡

4 , and loses separation power for
data generated with z = {0, ⇡

2 }, manifested by the lower
heights of the signal and background histograms near 1
and 0, respectively. The uncertainty-aware classifier
score is evaluated for the correct value of z, providing

the optimal score in each case.

z. No setting of the adversarially-trained classifier was
found to perform well for datasets with both values of z.

V. REALISTIC EXAMPLE

A more realistic application of the uncertainty-aware
classifier in the presence of nuisance parameters can be
performed using the datasets [56] produced for the Hig-
gsML Kaggle challenge [57] by the ATLAS Collaboration.
This dataset was originally simulated by the ATLAS col-
laboration to measure the decay of the Higgs boson to a
pair of ⌧ leptons [58]. This dataset was chosen for our
study because it has been used as a benchmark for un-
certainty aware learning in the past [52, 59].
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ggF and VBF production processes were simulated with
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function of the parameter of interest µ and the nuisance
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4 in the calculation of the
classifier score, the likelihood from the baseline classifier
can strongly exclude z = ⇡

4 when evaluated on a dataset
generated with z = ⇡

2 , but finds z = 0, ⇡
2 equally likely.

The uncertainty-aware classifier, on the other hand, is
also able to exclude the low z region.

The measurement of the nuisance parameter is not the
final objective and it can be profiled away. The most
relevant metric for determining the relative power of the
various approaches is the profile likelihood, maxz L(µ, z).

The profile likelihood for each method is shown in
Fig. 6 for data generated with z = ⇡

4 and z = ⇡
2 . In the

case of z = ⇡
4 , which matches the assumption of the base-

line classifier, the uncertainty-aware and baseline classi-
fiers both achieve ideal performance. The adversarial and
data-augmentation approaches are somewhat weaker due
to the inherent compromises of their methods.

When evaluated on data generated with z = ⇡
2 ,

in conflict with the assumption of the baseline classi-
fier, the performance of all approaches other than the
uncertainty-aware classifier deteriorate significantly. The
data-augmented classifier has been trained on 21 values
of z in the first quadrant centred around the nominal
value which makes it perform worse at extreme values of
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(b) Uncertainty Aware

FIG. 4: Template histograms of the classifier score for
the baseline (left) and uncertainty-aware approaches
(right) evaluated for data generated at various true

values of z. The signal distribution is shown in orange
and the background distribution in blue. The baseline
classifier assumes z = ⇡

4 , and loses separation power for
data generated with z = {0, ⇡

2 }, manifested by the lower
heights of the signal and background histograms near 1
and 0, respectively. The uncertainty-aware classifier
score is evaluated for the correct value of z, providing

the optimal score in each case.

z. No setting of the adversarially-trained classifier was
found to perform well for datasets with both values of z.

V. REALISTIC EXAMPLE

A more realistic application of the uncertainty-aware
classifier in the presence of nuisance parameters can be
performed using the datasets [56] produced for the Hig-
gsML Kaggle challenge [57] by the ATLAS Collaboration.
This dataset was originally simulated by the ATLAS col-
laboration to measure the decay of the Higgs boson to a
pair of ⌧ leptons [58]. This dataset was chosen for our
study because it has been used as a benchmark for un-
certainty aware learning in the past [52, 59].
The signal process is the production of Higgs bosons

through gluon-gluon fusion (ggF), vector boson fusion
(VBF), and associated production with a vector bo-
son (VH), which decay to pairs of ⌧ leptons. The
ggF and VBF production processes were simulated with
Powheg [60–63] interfaced to Pythia8 [27] while the
VH production is simulated with Pythia8. Further
details on corrections applied can be found in Sec 3.
of Ref. [58]. The detector response is simulated with
GEANT4 [64] and object reconstruction performed with
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function of the parameter of interest µ and the nuisance
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with z = ⇡
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generated with = ⇡
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maximum likelihood estimate which coincides with the
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4 when evaluated on a dataset
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2 , but finds z = 0, ⇡
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final objective and it can be profiled away. The most
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data-augmentation approaches are somewhat weaker due
to the inherent compromises of their methods.

When evaluated on data generated with z = ⇡
2 ,

in conflict with the assumption of the baseline classi-
fier, the performance of all approaches other than the
uncertainty-aware classifier deteriorate significantly. The
data-augmented classifier has been trained on 21 values
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FIG. 4: Template histograms of the classifier score for
the baseline (left) and uncertainty-aware approaches
(right) evaluated for data generated at various true

values of z. The signal distribution is shown in orange
and the background distribution in blue. The baseline
classifier assumes z = ⇡

4 , and loses separation power for
data generated with z = {0, ⇡

2 }, manifested by the lower
heights of the signal and background histograms near 1
and 0, respectively. The uncertainty-aware classifier
score is evaluated for the correct value of z, providing

the optimal score in each case.

z. No setting of the adversarially-trained classifier was
found to perform well for datasets with both values of z.

V. REALISTIC EXAMPLE

A more realistic application of the uncertainty-aware
classifier in the presence of nuisance parameters can be
performed using the datasets [56] produced for the Hig-
gsML Kaggle challenge [57] by the ATLAS Collaboration.
This dataset was originally simulated by the ATLAS col-
laboration to measure the decay of the Higgs boson to a
pair of ⌧ leptons [58]. This dataset was chosen for our
study because it has been used as a benchmark for un-
certainty aware learning in the past [52, 59].
The signal process is the production of Higgs bosons

through gluon-gluon fusion (ggF), vector boson fusion
(VBF), and associated production with a vector bo-
son (VH), which decay to pairs of ⌧ leptons. The
ggF and VBF production processes were simulated with
Powheg [60–63] interfaced to Pythia8 [27] while the
VH production is simulated with Pythia8. Further
details on corrections applied can be found in Sec 3.
of Ref. [58]. The detector response is simulated with
GEANT4 [64] and object reconstruction performed with

(a) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
4

(b) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
2

(c) Uncertainty-aware, on
data where z = ⇡

4

(d) Uncertainty-aware, on
data where z = ⇡

2

FIG. 5: The negative log-likelihood (Eq. 4) as a
function of the parameter of interest µ and the nuisance
parameter z for two example datasets, using templates
from the baseline (top) and uncertainty-aware classifier
(bottom). In the left column, the data are generated

with z = ⇡
4 , which matches the assumption made by the

baseline classifier. In the right column, the data are
generated with = ⇡

2 . The red dot indicates the
maximum likelihood estimate which coincides with the
true value of µ, z in each case. Note the di↵erent z-axis

scales for the two classifiers in the bottom row.
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B. Results

The negative log-likelihood (Eq. 4) is calculated as a
function of the parameter of interest µ and the nuisance
parameter z. Examples are shown in Fig. 5 using tem-
plates from the baseline and uncertainty-aware classifiers.
Due to its assumption that z = ⇡

4 in the calculation of the
classifier score, the likelihood from the baseline classifier
can strongly exclude z = ⇡

4 when evaluated on a dataset
generated with z = ⇡

2 , but finds z = 0, ⇡
2 equally likely.

The uncertainty-aware classifier, on the other hand, is
also able to exclude the low z region.

The measurement of the nuisance parameter is not the
final objective and it can be profiled away. The most
relevant metric for determining the relative power of the
various approaches is the profile likelihood, maxz L(µ, z).

The profile likelihood for each method is shown in
Fig. 6 for data generated with z = ⇡

4 and z = ⇡
2 . In the

case of z = ⇡
4 , which matches the assumption of the base-

line classifier, the uncertainty-aware and baseline classi-
fiers both achieve ideal performance. The adversarial and
data-augmentation approaches are somewhat weaker due
to the inherent compromises of their methods.

When evaluated on data generated with z = ⇡
2 ,

in conflict with the assumption of the baseline classi-
fier, the performance of all approaches other than the
uncertainty-aware classifier deteriorate significantly. The
data-augmented classifier has been trained on 21 values
of z in the first quadrant centred around the nominal
value which makes it perform worse at extreme values of
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FIG. 4: Template histograms of the classifier score for
the baseline (left) and uncertainty-aware approaches
(right) evaluated for data generated at various true

values of z. The signal distribution is shown in orange
and the background distribution in blue. The baseline
classifier assumes z = ⇡

4 , and loses separation power for
data generated with z = {0, ⇡

2 }, manifested by the lower
heights of the signal and background histograms near 1
and 0, respectively. The uncertainty-aware classifier
score is evaluated for the correct value of z, providing

the optimal score in each case.

z. No setting of the adversarially-trained classifier was
found to perform well for datasets with both values of z.

V. REALISTIC EXAMPLE

A more realistic application of the uncertainty-aware
classifier in the presence of nuisance parameters can be
performed using the datasets [56] produced for the Hig-
gsML Kaggle challenge [57] by the ATLAS Collaboration.
This dataset was originally simulated by the ATLAS col-
laboration to measure the decay of the Higgs boson to a
pair of ⌧ leptons [58]. This dataset was chosen for our
study because it has been used as a benchmark for un-
certainty aware learning in the past [52, 59].
The signal process is the production of Higgs bosons

through gluon-gluon fusion (ggF), vector boson fusion
(VBF), and associated production with a vector bo-
son (VH), which decay to pairs of ⌧ leptons. The
ggF and VBF production processes were simulated with
Powheg [60–63] interfaced to Pythia8 [27] while the
VH production is simulated with Pythia8. Further
details on corrections applied can be found in Sec 3.
of Ref. [58]. The detector response is simulated with
GEANT4 [64] and object reconstruction performed with

(a) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
4

(b) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
2

(c) Uncertainty-aware, on
data where z = ⇡

4

(d) Uncertainty-aware, on
data where z = ⇡

2

FIG. 5: The negative log-likelihood (Eq. 4) as a
function of the parameter of interest µ and the nuisance
parameter z for two example datasets, using templates
from the baseline (top) and uncertainty-aware classifier
(bottom). In the left column, the data are generated

with z = ⇡
4 , which matches the assumption made by the

baseline classifier. In the right column, the data are
generated with = ⇡

2 . The red dot indicates the
maximum likelihood estimate which coincides with the
true value of µ, z in each case. Note the di↵erent z-axis

scales for the two classifiers in the bottom row.
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B. Results

The negative log-likelihood (Eq. 4) is calculated as a
function of the parameter of interest µ and the nuisance
parameter z. Examples are shown in Fig. 5 using tem-
plates from the baseline and uncertainty-aware classifiers.
Due to its assumption that z = ⇡

4 in the calculation of the
classifier score, the likelihood from the baseline classifier
can strongly exclude z = ⇡

4 when evaluated on a dataset
generated with z = ⇡

2 , but finds z = 0, ⇡
2 equally likely.

The uncertainty-aware classifier, on the other hand, is
also able to exclude the low z region.

The measurement of the nuisance parameter is not the
final objective and it can be profiled away. The most
relevant metric for determining the relative power of the
various approaches is the profile likelihood, maxz L(µ, z).

The profile likelihood for each method is shown in
Fig. 6 for data generated with z = ⇡

4 and z = ⇡
2 . In the

case of z = ⇡
4 , which matches the assumption of the base-

line classifier, the uncertainty-aware and baseline classi-
fiers both achieve ideal performance. The adversarial and
data-augmentation approaches are somewhat weaker due
to the inherent compromises of their methods.

When evaluated on data generated with z = ⇡
2 ,

in conflict with the assumption of the baseline classi-
fier, the performance of all approaches other than the
uncertainty-aware classifier deteriorate significantly. The
data-augmented classifier has been trained on 21 values
of z in the first quadrant centred around the nominal
value which makes it perform worse at extreme values of
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(b) Uncertainty Aware

FIG. 4: Template histograms of the classifier score for
the baseline (left) and uncertainty-aware approaches
(right) evaluated for data generated at various true

values of z. The signal distribution is shown in orange
and the background distribution in blue. The baseline
classifier assumes z = ⇡

4 , and loses separation power for
data generated with z = {0, ⇡

2 }, manifested by the lower
heights of the signal and background histograms near 1
and 0, respectively. The uncertainty-aware classifier
score is evaluated for the correct value of z, providing

the optimal score in each case.

z. No setting of the adversarially-trained classifier was
found to perform well for datasets with both values of z.

V. REALISTIC EXAMPLE

A more realistic application of the uncertainty-aware
classifier in the presence of nuisance parameters can be
performed using the datasets [56] produced for the Hig-
gsML Kaggle challenge [57] by the ATLAS Collaboration.
This dataset was originally simulated by the ATLAS col-
laboration to measure the decay of the Higgs boson to a
pair of ⌧ leptons [58]. This dataset was chosen for our
study because it has been used as a benchmark for un-
certainty aware learning in the past [52, 59].
The signal process is the production of Higgs bosons

through gluon-gluon fusion (ggF), vector boson fusion
(VBF), and associated production with a vector bo-
son (VH), which decay to pairs of ⌧ leptons. The
ggF and VBF production processes were simulated with
Powheg [60–63] interfaced to Pythia8 [27] while the
VH production is simulated with Pythia8. Further
details on corrections applied can be found in Sec 3.
of Ref. [58]. The detector response is simulated with
GEANT4 [64] and object reconstruction performed with

(a) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
4

(b) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
2

(c) Uncertainty-aware, on
data where z = ⇡

4

(d) Uncertainty-aware, on
data where z = ⇡

2

FIG. 5: The negative log-likelihood (Eq. 4) as a
function of the parameter of interest µ and the nuisance
parameter z for two example datasets, using templates
from the baseline (top) and uncertainty-aware classifier
(bottom). In the left column, the data are generated

with z = ⇡
4 , which matches the assumption made by the

baseline classifier. In the right column, the data are
generated with = ⇡

2 . The red dot indicates the
maximum likelihood estimate which coincides with the
true value of µ, z in each case. Note the di↵erent z-axis

scales for the two classifiers in the bottom row.
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III. EVALUATION METHODOLOGY

To evaluate the power of each approach above, we ap-
ply them to a common use case, fitting a signal hypothe-
sis in the presence of background, where both signal and
background depend on nuisance parameters. Relevant to
many measurements of Standard Model (SM) processes
as well as searches for physics beyond the SM, the param-
eter of interest is the signal strength µ, the cross section of
the signal relative to the reference value. In the Gaussian
example below, we use low-dimensional datasets for sim-
pler visualization, but the results generalize. Similarly,
for ease of calculations we perform a binned likelihood fit,
although the unbinned nature of neural networks should
allow application to unbinned cases; we leave that inves-
tigation to future work.

For each of the strategies described, template his-
tograms of the classifier score are constructed from sim-
ulated signal and background events for several values of
the nuisance parameter z. These templates are the basis
of the binned likelihood calculation L(µ, z|{xi}) over the
parameters µ, z, where {xi} is the full observed dataset.
The likelihood is a product of a Poisson term for each
histogram bin and a Gaussian constraint on the nuisance
parameter. The Gaussian constraint can readily be re-
placed with any other prior or a Poisson term from an
auxiliary measurement if z is directly constrained with
control region data (demonstrated in Appendix B). If no
additional prior or constraint on the nuisance parameter
is used then only information from the primary measure-
ment constrains z. The Negative Log-Likelihood (NLL)
is (up to an irrelevant constant),

� logL(µ, z|{xi})

= �
nbinsX

j=1


Nj · log (µsj + bj) � µsj � bj � log(�(Ni))

�

+

✓
z � z0p
2�z

◆2

, (4)

where sj , bj are the expected number of signal and back-
ground events in bin j, respectively, and Nj is the num-
ber of events observed in data for that bin. The � func-
tion is the generalized factorial function which can handle
decimal values in the simulated test dataset. Although
usually irrelevant, the log(�(Ni)) term is not a constant
while using an uncertainty-aware network and cannot be
ignored. For this approach, the decision function changes
with z and therefore the bin counts in simulation and ob-
served data also change with z.

In practice, samples at various values of z can often
be produced cheaply from a single simulated MC sample
by shifting the value of z and recomputing all the rel-
evant physics variables, and this approach will be used
for the studies in Sec. V. Care must be taken to apply
any kinematic selection on these variables only after the
shift. In these studies, the templates and the ‘observed
dataset’ are built using the same test dataset because the

dataset used in Sec. V is not large enough to split into
three representative datasets.

The fitted value of µ is obtained by minimizing Eq. 4.
Uncertainties are accounted for by studying the depen-
dence of the likelihood near the fitted value µ̂ while op-
timizing over z. The power of each approach is deter-
mined by their relative uncertainties in µ. As a diagnos-
tic, the parameter of interest may be profiled over instead
to check if the measurement over-constrains the nuisance
parameter.

IV. GAUSSIAN EXAMPLE

To illustrate the di↵erent approaches in a simple set-
ting with complete analytic control, we begin with a
Gaussian example with a two-dimensional feature space
and a single nuisance parameter. Signal events are drawn
from Gaussian distributions in the two features, with
means at cos (z) and sin (z), respectively; the width of
each is set to 0.7. Background events are generated in
same fashion, but with means for the two features at
� cos (z) and � sin (z) respectively. An example of the
signal and background distributions for z = ⇡

4 is shown
in Fig. 2.

A set of 4.2 ⇥ 107 events are generated at 21 values
of z equally spaced between 0 and ⇡/2. The dataset is
split into training and test sets with a ratio of 3:1. All
signal events in the test set have a weight of 10�3 and
all background events have a weight of 10�1 to mimic a
rare signal typical of LHC analyses. Ten bins are used
to construct the template and observed histograms. The
parameter of interest is the signal strength µ with a true
value of 1.

z = �/4

FIG. 2: Contour of probability densities for signal and
background hypotheses in the two-dimensional feature
space for the simple Gaussian demonstration case, with

the nuisance parameter fixed to z = ⇡
4 .

zT →  True z
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B. Results

The negative log-likelihood (Eq. 4) is calculated as a
function of the parameter of interest µ and the nuisance
parameter z. Examples are shown in Fig. 5 using tem-
plates from the baseline and uncertainty-aware classifiers.
Due to its assumption that z = ⇡

4 in the calculation of the
classifier score, the likelihood from the baseline classifier
can strongly exclude z = ⇡

4 when evaluated on a dataset
generated with z = ⇡

2 , but finds z = 0, ⇡
2 equally likely.

The uncertainty-aware classifier, on the other hand, is
also able to exclude the low z region.

The measurement of the nuisance parameter is not the
final objective and it can be profiled away. The most
relevant metric for determining the relative power of the
various approaches is the profile likelihood, maxz L(µ, z).

The profile likelihood for each method is shown in
Fig. 6 for data generated with z = ⇡

4 and z = ⇡
2 . In the

case of z = ⇡
4 , which matches the assumption of the base-

line classifier, the uncertainty-aware and baseline classi-
fiers both achieve ideal performance. The adversarial and
data-augmentation approaches are somewhat weaker due
to the inherent compromises of their methods.

When evaluated on data generated with z = ⇡
2 ,

in conflict with the assumption of the baseline classi-
fier, the performance of all approaches other than the
uncertainty-aware classifier deteriorate significantly. The
data-augmented classifier has been trained on 21 values
of z in the first quadrant centred around the nominal
value which makes it perform worse at extreme values of
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(b) Uncertainty Aware

FIG. 4: Template histograms of the classifier score for
the baseline (left) and uncertainty-aware approaches
(right) evaluated for data generated at various true

values of z. The signal distribution is shown in orange
and the background distribution in blue. The baseline
classifier assumes z = ⇡

4 , and loses separation power for
data generated with z = {0, ⇡

2 }, manifested by the lower
heights of the signal and background histograms near 1
and 0, respectively. The uncertainty-aware classifier
score is evaluated for the correct value of z, providing

the optimal score in each case.

z. No setting of the adversarially-trained classifier was
found to perform well for datasets with both values of z.

V. REALISTIC EXAMPLE

A more realistic application of the uncertainty-aware
classifier in the presence of nuisance parameters can be
performed using the datasets [56] produced for the Hig-
gsML Kaggle challenge [57] by the ATLAS Collaboration.
This dataset was originally simulated by the ATLAS col-
laboration to measure the decay of the Higgs boson to a
pair of ⌧ leptons [58]. This dataset was chosen for our
study because it has been used as a benchmark for un-
certainty aware learning in the past [52, 59].
The signal process is the production of Higgs bosons

through gluon-gluon fusion (ggF), vector boson fusion
(VBF), and associated production with a vector bo-
son (VH), which decay to pairs of ⌧ leptons. The
ggF and VBF production processes were simulated with
Powheg [60–63] interfaced to Pythia8 [27] while the
VH production is simulated with Pythia8. Further
details on corrections applied can be found in Sec 3.
of Ref. [58]. The detector response is simulated with
GEANT4 [64] and object reconstruction performed with

(a) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
4

(b) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
2

(c) Uncertainty-aware, on
data where z = ⇡

4

(d) Uncertainty-aware, on
data where z = ⇡

2

FIG. 5: The negative log-likelihood (Eq. 4) as a
function of the parameter of interest µ and the nuisance
parameter z for two example datasets, using templates
from the baseline (top) and uncertainty-aware classifier
(bottom). In the left column, the data are generated

with z = ⇡
4 , which matches the assumption made by the

baseline classifier. In the right column, the data are
generated with = ⇡

2 . The red dot indicates the
maximum likelihood estimate which coincides with the
true value of µ, z in each case. Note the di↵erent z-axis

scales for the two classifiers in the bottom row.
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B. Results

The negative log-likelihood (Eq. 4) is calculated as a
function of the parameter of interest µ and the nuisance
parameter z. Examples are shown in Fig. 5 using tem-
plates from the baseline and uncertainty-aware classifiers.
Due to its assumption that z = ⇡

4 in the calculation of the
classifier score, the likelihood from the baseline classifier
can strongly exclude z = ⇡

4 when evaluated on a dataset
generated with z = ⇡

2 , but finds z = 0, ⇡
2 equally likely.

The uncertainty-aware classifier, on the other hand, is
also able to exclude the low z region.

The measurement of the nuisance parameter is not the
final objective and it can be profiled away. The most
relevant metric for determining the relative power of the
various approaches is the profile likelihood, maxz L(µ, z).

The profile likelihood for each method is shown in
Fig. 6 for data generated with z = ⇡

4 and z = ⇡
2 . In the

case of z = ⇡
4 , which matches the assumption of the base-

line classifier, the uncertainty-aware and baseline classi-
fiers both achieve ideal performance. The adversarial and
data-augmentation approaches are somewhat weaker due
to the inherent compromises of their methods.

When evaluated on data generated with z = ⇡
2 ,

in conflict with the assumption of the baseline classi-
fier, the performance of all approaches other than the
uncertainty-aware classifier deteriorate significantly. The
data-augmented classifier has been trained on 21 values
of z in the first quadrant centred around the nominal
value which makes it perform worse at extreme values of
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(b) Uncertainty Aware

FIG. 4: Template histograms of the classifier score for
the baseline (left) and uncertainty-aware approaches
(right) evaluated for data generated at various true

values of z. The signal distribution is shown in orange
and the background distribution in blue. The baseline
classifier assumes z = ⇡

4 , and loses separation power for
data generated with z = {0, ⇡

2 }, manifested by the lower
heights of the signal and background histograms near 1
and 0, respectively. The uncertainty-aware classifier
score is evaluated for the correct value of z, providing

the optimal score in each case.

z. No setting of the adversarially-trained classifier was
found to perform well for datasets with both values of z.

V. REALISTIC EXAMPLE

A more realistic application of the uncertainty-aware
classifier in the presence of nuisance parameters can be
performed using the datasets [56] produced for the Hig-
gsML Kaggle challenge [57] by the ATLAS Collaboration.
This dataset was originally simulated by the ATLAS col-
laboration to measure the decay of the Higgs boson to a
pair of ⌧ leptons [58]. This dataset was chosen for our
study because it has been used as a benchmark for un-
certainty aware learning in the past [52, 59].
The signal process is the production of Higgs bosons

through gluon-gluon fusion (ggF), vector boson fusion
(VBF), and associated production with a vector bo-
son (VH), which decay to pairs of ⌧ leptons. The
ggF and VBF production processes were simulated with
Powheg [60–63] interfaced to Pythia8 [27] while the
VH production is simulated with Pythia8. Further
details on corrections applied can be found in Sec 3.
of Ref. [58]. The detector response is simulated with
GEANT4 [64] and object reconstruction performed with

(a) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
4

(b) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
2

(c) Uncertainty-aware, on
data where z = ⇡

4

(d) Uncertainty-aware, on
data where z = ⇡

2

FIG. 5: The negative log-likelihood (Eq. 4) as a
function of the parameter of interest µ and the nuisance
parameter z for two example datasets, using templates
from the baseline (top) and uncertainty-aware classifier
(bottom). In the left column, the data are generated

with z = ⇡
4 , which matches the assumption made by the

baseline classifier. In the right column, the data are
generated with = ⇡

2 . The red dot indicates the
maximum likelihood estimate which coincides with the
true value of µ, z in each case. Note the di↵erent z-axis

scales for the two classifiers in the bottom row.
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III. EVALUATION METHODOLOGY

To evaluate the power of each approach above, we ap-
ply them to a common use case, fitting a signal hypothe-
sis in the presence of background, where both signal and
background depend on nuisance parameters. Relevant to
many measurements of Standard Model (SM) processes
as well as searches for physics beyond the SM, the param-
eter of interest is the signal strength µ, the cross section of
the signal relative to the reference value. In the Gaussian
example below, we use low-dimensional datasets for sim-
pler visualization, but the results generalize. Similarly,
for ease of calculations we perform a binned likelihood fit,
although the unbinned nature of neural networks should
allow application to unbinned cases; we leave that inves-
tigation to future work.

For each of the strategies described, template his-
tograms of the classifier score are constructed from sim-
ulated signal and background events for several values of
the nuisance parameter z. These templates are the basis
of the binned likelihood calculation L(µ, z|{xi}) over the
parameters µ, z, where {xi} is the full observed dataset.
The likelihood is a product of a Poisson term for each
histogram bin and a Gaussian constraint on the nuisance
parameter. The Gaussian constraint can readily be re-
placed with any other prior or a Poisson term from an
auxiliary measurement if z is directly constrained with
control region data (demonstrated in Appendix B). If no
additional prior or constraint on the nuisance parameter
is used then only information from the primary measure-
ment constrains z. The Negative Log-Likelihood (NLL)
is (up to an irrelevant constant),

� logL(µ, z|{xi})

= �
nbinsX

j=1


Nj · log (µsj + bj) � µsj � bj � log(�(Ni))

�

+

✓
z � z0p
2�z

◆2

, (4)

where sj , bj are the expected number of signal and back-
ground events in bin j, respectively, and Nj is the num-
ber of events observed in data for that bin. The � func-
tion is the generalized factorial function which can handle
decimal values in the simulated test dataset. Although
usually irrelevant, the log(�(Ni)) term is not a constant
while using an uncertainty-aware network and cannot be
ignored. For this approach, the decision function changes
with z and therefore the bin counts in simulation and ob-
served data also change with z.

In practice, samples at various values of z can often
be produced cheaply from a single simulated MC sample
by shifting the value of z and recomputing all the rel-
evant physics variables, and this approach will be used
for the studies in Sec. V. Care must be taken to apply
any kinematic selection on these variables only after the
shift. In these studies, the templates and the ‘observed
dataset’ are built using the same test dataset because the

dataset used in Sec. V is not large enough to split into
three representative datasets.

The fitted value of µ is obtained by minimizing Eq. 4.
Uncertainties are accounted for by studying the depen-
dence of the likelihood near the fitted value µ̂ while op-
timizing over z. The power of each approach is deter-
mined by their relative uncertainties in µ. As a diagnos-
tic, the parameter of interest may be profiled over instead
to check if the measurement over-constrains the nuisance
parameter.

IV. GAUSSIAN EXAMPLE

To illustrate the di↵erent approaches in a simple set-
ting with complete analytic control, we begin with a
Gaussian example with a two-dimensional feature space
and a single nuisance parameter. Signal events are drawn
from Gaussian distributions in the two features, with
means at cos (z) and sin (z), respectively; the width of
each is set to 0.7. Background events are generated in
same fashion, but with means for the two features at
� cos (z) and � sin (z) respectively. An example of the
signal and background distributions for z = ⇡

4 is shown
in Fig. 2.

A set of 4.2 ⇥ 107 events are generated at 21 values
of z equally spaced between 0 and ⇡/2. The dataset is
split into training and test sets with a ratio of 3:1. All
signal events in the test set have a weight of 10�3 and
all background events have a weight of 10�1 to mimic a
rare signal typical of LHC analyses. Ten bins are used
to construct the template and observed histograms. The
parameter of interest is the signal strength µ with a true
value of 1.

z = �/4

FIG. 2: Contour of probability densities for signal and
background hypotheses in the two-dimensional feature
space for the simple Gaussian demonstration case, with

the nuisance parameter fixed to z = ⇡
4 .

zT →  True z
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the o�cial ATLAS software [65]. The three largest back-
grounds from Z/�

⇤ ! ⌧⌧ , tt̄ and W + jets are simulated
with the same chain and mixed in proportions deter-
mined by their relative cross sections. Di↵erent aspects
of the Z/�

⇤ ! ⌧⌧ background are simulated with Alp-

gen, Pythia8, Herwig, and Sherpa [66]; the details
can be found in Table 1 of Ref. [58]. The tt̄ background is
simulated with Powheg and Pythia8 and the W +jets
background is simulated withAlpgen [67] and Pythia8.

(a) Data generated with z = ⇡
4 .

(b) Data generated with z = ⇡
2 .

FIG. 6: The profile likelihood maxz L(µ, z) as a
function of the parameter of interest, µ for likelihoods

calculated with templates built from the various
classifiers. Narrower curves indicate more precise

measurements having accounted for systematic and
statistical uncertainties. The baseline classifier assumes

z = ⇡
4 , and matches the performance of the

uncertainty-aware classifier in data generated with
z = ⇡

4 (top). In data generated with z = ⇡
2 , the power

of all classifiers other than the uncertainty-aware
classifier become significantly weaker.

Each event is characterized by 29 features2, including the
lepton momenta and angles, the magnitude and direction
of missing transverse momentum, the energy and angles
of leading and sub-leading jets, and several other primary
and derived variables. See Ref. [56] for details.
The most important nuisance parameter is the un-

known absolute energy scale of the hadronically decaying
⌧ leptons. We follow prior studies [52, 59] and model this
using a skewing function [69] which is applied to the ⌧ lep-
ton ET, for signal and background alike. The minimum
ET threshold of 22 GeV is applied after skewing.
At the nominal value of the nuisance parameter, z = 1,

the ⌧ lepton energies are left unchanged. The impact of
z = 0.9 or 1.1, on several features is shown in Fig. 7.
The (unweighted) total number of events that pass the
ET threshold for the z = 0.9, z = 1 and z = 1.1 datasets
are 618906, 719349 and 818201 respectively. The data are
split into training and test set in the ratio 2:1. Since the
data at various values of z are generated from the nominal
sample, the samples are to a large extent correlated. The
train-test split therefore is determined before the skewing
function and ET threshold are applied, ensuring complete
independence between training and test sets.
Thirty bins are used to construct the template and

observed histograms.

A. Description of Trained Models

All methods were implemented using neural networks.
The baseline classifier was trained only on data at z = 1,
while the data augmentation classifier, uncertainty-aware
classifier and the adversarial classifier are all trained at
24 values spaced between z = 0.7 and z = 1.4. Two
additional classifiers were also trained on data at z = 0.8
and z = 1.1 to estimate the best possible performance
for an unparameterized classifier at these values of the
nuisance parameter.
Technical details about the training procedure and ar-

chitectures of the models are given below.

1. Baseline Classifier

The neural network comprises 10 hidden layers with
512 nodes each, ReLU activations and L2 kernel regu-
larizers for all but the first hidden layer and a final layer
with a single node and sigmoid activation. It was trained
with an RMSProp optimizer, BCE loss and a batch size
of 4096.

2 The DER mass MMC feature listed in Ref. [56] was not included
in the studies, following precedent set by Ref. [52], because the
Missing Mass Calculator [68] is slow to run and as an MCMC
algorithm, introduces an additional source of stochasticity which
makes comparisons di�cult.

32

Profile away Z - Example at (μ, Z)True = (1, 1.57)

Narrower is better: We can exclude wrong values of μ with 
greater confidence.


The profiled (Negative-Log-) Likelihood curve for 
Uncertainty-Aware classifier is much narrower ⇒ smallest 
[statistical + systematic] uncertainty on measurement


Narrower is better

Signal Strength
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Profile Likelihood

Standard method of including the systematic 
uncertainty into the likelihood computation


We simply make the selection/observable a 
function of z


In principle could also be done in cut-based 
analysis: make cut a continuous function of z

7KH�3URILOH�/LNHOLKRRG�DSSURDFK

�

Ɣ 7KH�SURILOH�OLNHOLKRRG�LV�D�ZD\�WR�LQFOXGH�V\VWHPDWLF�XQFHUWDLQWLHV�LQ�WKH�OLNHOLKRRG
ż V\VWHPDWLFV�LQFOXGHG�DV��FRQVWUDLQHG��QXLVDQFH�SDUDPHWHUV
ż WKH�LGHD�EHKLQG�LV�WKDW�V\VWHPDWLF�XQFHUWDLQWLHV�RQ�WKH�PHDVXUHPHQW�RI�w�FRPH�IURP�

LPSHUIHFW�NQRZOHGJH�RI�SDUDPHWHUV�RI�WKH�PRGHO��6�DQG�%�SUHGLFWLRQ�
Ŷ VWLOO�VRPH�NQRZOHGJH�LV�LPSOLHG���ƅ� �ƅ��s�Ţƅ�

ż H[WHUQDO���D�SULRUL�NQRZOHGJH�LQWHUSUHWHG�DV��DX[LOLDU\�VXEVLGLDU\�PHDVXUHPHQW���
LPSOHPHQWHG�DV�FRQVWUDLQW�SHQDOW\�WHUP��L�H��SUREDELOLW\�GHQVLW\�IXQFWLRQ
�XVXDOO\�*DXVVLDQ��LQWHUSUHWLQJ��sŢƅ��DV�*DXVVLDQ�VWDQGDUG�GHYLDWLRQ�

� XVXDOO\�ș� ��DQG�ǻș ���FRQYHQWLRQ�
� GHILQH�HIIHFW�RI�V\VWHPDWLF�M�RQ�SUHGLFWLRQ�[�LQ�ELQ�L�DW������DQG������
� WKHQ�LQWHUSRODWH�	�H[WUDSRODWH�IRU�DQ\�YDOXH�RI�ș�

From Michele Pinamonti’s talk:


https://indico.cern.ch/event/727396/contributions/3021899/attachments/1657532/2654085/
Statistical_methods_at_ATLAS_and_CMS_2.pdf
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But in a real measurement we don’t know true Z a priori, 
would this still help?
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But in a real measurement we don’t know true Z a priori, 
would this still help?

Yes!
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But in a real measurement we don’t know true Z a priori, 
would this still help?

Yes!

Okay, it works on your handcrafted toy problem.

What about a real physics dataset?
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HiggsML Public Dataset with Tau Energy Scale (TES) as Z

Parameter of Interest is Higgs signal strength μ, and 
TES is the nuisance parameter Z

8

2. Data Augmentation

The network comprises 10 hidden layers, each with 64
nodes, a ReLU activation, and L2 kernel regularizers for
all but the first hidden layer and a final layer with sig-
moid activation. The network was trained with an Adam

(a) p⌧t (GeV)

(b) �MET
centrality

(c) mlep,MET
t (GeV)

FIG. 7: Distribution of physics variables for three
values of the nuisance parameter which controls the
absolute tau lepton energy scale, z = {0.8, 1, 1.1} for
background processes. a the transverse momentum of
the hadronic ⌧ , b the centrality in � of the missing

transverse energy vector with respect to the hadronic ⌧

and the lepton, c transverse mass of the missing
transverse energy and the lepton.

optimizer [70], BCE loss and a batch size of 4096.
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FIG. 8: Distribution of physics variables for three
values of the nuisance parameter which controls the
absolute tau lepton energy scale, z = {0.8, 1, 1.1} for

signal. a the transverse momentum of the hadronic ⌧ , b
the centrality in � of the missing transverse energy

vector with respect to the hadronic ⌧ and the lepton, c
transverse mass of the missing transverse energy and

the lepton.
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(a) p⌧t (GeV)

(b) �MET
centrality

(c) mlep,MET
t (GeV)

FIG. 8: Distribution of physics variables for three
values of the nuisance parameter which controls the
absolute tau lepton energy scale, z = {0.8, 1, 1.1} for

signal. a the transverse momentum of the hadronic ⌧ , b
the centrality in � of the missing transverse energy

vector with respect to the hadronic ⌧ and the lepton, c
transverse mass of the missing transverse energy and

the lepton.

8

2. Data Augmentation

The network comprises 10 hidden layers, each with 64
nodes, a ReLU activation, and L2 kernel regularizers for
all but the first hidden layer and a final layer with sig-
moid activation. The network was trained with an Adam

(a) p⌧t (GeV)

�1.5 �1.0 �0.5 0.0 0.5 1.0 1.5

�MET
centrality

0

50000

100000

150000

200000

N
um

be
r

of
E
ve

nt
s Z ! �lep�had,

tt̄, W + jets
HiggsML Dataset

Z ! �lep�had,

tt̄, W + jets
HiggsML Dataset

Z ! �lep�had,

tt̄, W + jets
HiggsML Dataset

z=0.9

z=1.0

z=1.1

(b) �MET
centrality

(c) mlep,MET
t (GeV)

FIG. 7: Distribution of physics variables for three
values of the nuisance parameter which controls the
absolute tau lepton energy scale, z = {0.8, 1, 1.1} for
background processes. a the transverse momentum of
the hadronic ⌧ , b the centrality in � of the missing

transverse energy vector with respect to the hadronic ⌧

and the lepton, c transverse mass of the missing
transverse energy and the lepton.

optimizer [70], BCE loss and a batch size of 4096.

(a) p⌧t (GeV)

(b) �MET
centrality

(c) mlep,MET
t (GeV)

FIG. 8: Distribution of physics variables for three
values of the nuisance parameter which controls the
absolute tau lepton energy scale, z = {0.8, 1, 1.1} for

signal. a the transverse momentum of the hadronic ⌧ , b
the centrality in � of the missing transverse energy

vector with respect to the hadronic ⌧ and the lepton, c
transverse mass of the missing transverse energy and

the lepton.

We later realised dataset isn’t ideal, stats limited..
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Test performance for “observed” at Systematic below Nominal

μ = 1, Z= 0.8

(Signal Strength)
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Test performance for “observed” at Systematic below Nominal

Uncertainty-Aware coincides with classifier trained on 
true Z 


⇒ It is optimal!

10

(a) Systematic Down Data (b) Nominal Data (c) Systematic Up Data

FIG. 9: Physics Dataset: Profiled NLL curves for all four classifiers evaluated on a systematic down (zT = 0.8), b
nominal data (zT = 1.0) and c systematic up data (zT = 1.1) where the true value of µ is 1. Narrower curves

indicate more precise measurements having accounted for systematic and statistical uncertainties.

Narrower is better

Up is better

μ = 1, Z= 0.8

(Signal Strength)
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Test performance for “observed” datasets at nominal and above nominal Z

In every case the Aware Classifier is as good as the optimal one, no other technique 
matches its performance everywhere

10

(a) Systematic Down Data (b) Nominal Data (c) Systematic Up Data

FIG. 9: Physics Dataset: Profiled NLL curves for all four classifiers evaluated on a systematic down (zT = 0.8), b
nominal data (zT = 1.0) and c systematic up data (zT = 1.1) where the true value of µ is 1. Narrower curves

indicate more precise measurements having accounted for systematic and statistical uncertainties.

Aware and Baseline coincide

10

(a) Systematic Down Data (b) Nominal Data (c) Systematic Up Data

FIG. 9: Physics Dataset: Profiled NLL curves for all four classifiers evaluated on a systematic down (zT = 0.8), b
nominal data (zT = 1.0) and c systematic up data (zT = 1.1) where the true value of µ is 1. Narrower curves

indicate more precise measurements having accounted for systematic and statistical uncertainties.

Aware and locally optimal 
coincide

μ = 1, Z= 1 (nominal)
μ = 1, Z= 1.1
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Practical advantages of factorising inference

While using histogram (or KDE) templates seems 
clunky, it has practical advantages:

• More diagnostic tools: look at histograms, test for 

over-constraining of z

• Study impact of/profile over untrained nuisance 

parameters

• No worries about calibration of NN

6

B. Results

The negative log-likelihood (Eq. 4) is calculated as a
function of the parameter of interest µ and the nuisance
parameter z. Examples are shown in Fig. 5 using tem-
plates from the baseline and uncertainty-aware classifiers.
Due to its assumption that z = ⇡

4 in the calculation of the
classifier score, the likelihood from the baseline classifier
can strongly exclude z = ⇡

4 when evaluated on a dataset
generated with z = ⇡

2 , but finds z = 0, ⇡
2 equally likely.

The uncertainty-aware classifier, on the other hand, is
also able to exclude the low z region.

The measurement of the nuisance parameter is not the
final objective and it can be profiled away. The most
relevant metric for determining the relative power of the
various approaches is the profile likelihood, maxz L(µ, z).

The profile likelihood for each method is shown in
Fig. 6 for data generated with z = ⇡

4 and z = ⇡
2 . In the

case of z = ⇡
4 , which matches the assumption of the base-

line classifier, the uncertainty-aware and baseline classi-
fiers both achieve ideal performance. The adversarial and
data-augmentation approaches are somewhat weaker due
to the inherent compromises of their methods.

When evaluated on data generated with z = ⇡
2 ,

in conflict with the assumption of the baseline classi-
fier, the performance of all approaches other than the
uncertainty-aware classifier deteriorate significantly. The
data-augmented classifier has been trained on 21 values
of z in the first quadrant centred around the nominal
value which makes it perform worse at extreme values of

7
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(b) Uncertainty Aware

FIG. 4: Template histograms of the classifier score for
the baseline (left) and uncertainty-aware approaches
(right) evaluated for data generated at various true

values of z. The signal distribution is shown in orange
and the background distribution in blue. The baseline
classifier assumes z = ⇡

4 , and loses separation power for
data generated with z = {0, ⇡

2 }, manifested by the lower
heights of the signal and background histograms near 1
and 0, respectively. The uncertainty-aware classifier
score is evaluated for the correct value of z, providing

the optimal score in each case.

z. No setting of the adversarially-trained classifier was
found to perform well for datasets with both values of z.

V. REALISTIC EXAMPLE

A more realistic application of the uncertainty-aware
classifier in the presence of nuisance parameters can be
performed using the datasets [56] produced for the Hig-
gsML Kaggle challenge [57] by the ATLAS Collaboration.
This dataset was originally simulated by the ATLAS col-
laboration to measure the decay of the Higgs boson to a
pair of ⌧ leptons [58]. This dataset was chosen for our
study because it has been used as a benchmark for un-
certainty aware learning in the past [52, 59].
The signal process is the production of Higgs bosons

through gluon-gluon fusion (ggF), vector boson fusion
(VBF), and associated production with a vector bo-
son (VH), which decay to pairs of ⌧ leptons. The
ggF and VBF production processes were simulated with
Powheg [60–63] interfaced to Pythia8 [27] while the
VH production is simulated with Pythia8. Further
details on corrections applied can be found in Sec 3.
of Ref. [58]. The detector response is simulated with
GEANT4 [64] and object reconstruction performed with

(a) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
4

(b) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
2

(c) Uncertainty-aware, on
data where z = ⇡

4

(d) Uncertainty-aware, on
data where z = ⇡

2

FIG. 5: The negative log-likelihood (Eq. 4) as a
function of the parameter of interest µ and the nuisance
parameter z for two example datasets, using templates
from the baseline (top) and uncertainty-aware classifier
(bottom). In the left column, the data are generated

with z = ⇡
4 , which matches the assumption made by the

baseline classifier. In the right column, the data are
generated with = ⇡

2 . The red dot indicates the
maximum likelihood estimate which coincides with the
true value of µ, z in each case. Note the di↵erent z-axis

scales for the two classifiers in the bottom row.
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B. Results

The negative log-likelihood (Eq. 4) is calculated as a
function of the parameter of interest µ and the nuisance
parameter z. Examples are shown in Fig. 5 using tem-
plates from the baseline and uncertainty-aware classifiers.
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generated with z = ⇡

2 , but finds z = 0, ⇡
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FIG. 4: Template histograms of the classifier score for
the baseline (left) and uncertainty-aware approaches
(right) evaluated for data generated at various true

values of z. The signal distribution is shown in orange
and the background distribution in blue. The baseline
classifier assumes z = ⇡

4 , and loses separation power for
data generated with z = {0, ⇡

2 }, manifested by the lower
heights of the signal and background histograms near 1
and 0, respectively. The uncertainty-aware classifier
score is evaluated for the correct value of z, providing

the optimal score in each case.

z. No setting of the adversarially-trained classifier was
found to perform well for datasets with both values of z.

V. REALISTIC EXAMPLE

A more realistic application of the uncertainty-aware
classifier in the presence of nuisance parameters can be
performed using the datasets [56] produced for the Hig-
gsML Kaggle challenge [57] by the ATLAS Collaboration.
This dataset was originally simulated by the ATLAS col-
laboration to measure the decay of the Higgs boson to a
pair of ⌧ leptons [58]. This dataset was chosen for our
study because it has been used as a benchmark for un-
certainty aware learning in the past [52, 59].
The signal process is the production of Higgs bosons

through gluon-gluon fusion (ggF), vector boson fusion
(VBF), and associated production with a vector bo-
son (VH), which decay to pairs of ⌧ leptons. The
ggF and VBF production processes were simulated with
Powheg [60–63] interfaced to Pythia8 [27] while the
VH production is simulated with Pythia8. Further
details on corrections applied can be found in Sec 3.
of Ref. [58]. The detector response is simulated with
GEANT4 [64] and object reconstruction performed with

(a) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
4

(b) Baseline, assuming
z = ⇡

4 , on data where z = ⇡
2

(c) Uncertainty-aware, on
data where z = ⇡

4

(d) Uncertainty-aware, on
data where z = ⇡

2

FIG. 5: The negative log-likelihood (Eq. 4) as a
function of the parameter of interest µ and the nuisance
parameter z for two example datasets, using templates
from the baseline (top) and uncertainty-aware classifier
(bottom). In the left column, the data are generated

with z = ⇡
4 , which matches the assumption made by the

baseline classifier. In the right column, the data are
generated with = ⇡

2 . The red dot indicates the
maximum likelihood estimate which coincides with the
true value of µ, z in each case. Note the di↵erent z-axis

scales for the two classifiers in the bottom row.
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(a) Baseline, on data where
z = ⇡

4

(b) Baseline, on data where
z = ⇡

2

(c) Uncertainty-aware, on
data where z = ⇡

4

(d) Uncertainty-aware, on
data where z = ⇡

2

(e) Data augmentation, on
data where z = ⇡

4

(f) Data augmentation, on
data where z = ⇡

2

(g) Adversarial training, on
data where z = ⇡

4

(h) Adversarial training, on
data where z = ⇡

2

FIG. 12: The negative log-likelihood (Eq. B1) as a
function of the parameter of interest µ and the nuisance
parameter z in the auxiliary measurement study, using
templates from the baseline (first row), systematic

aware (second row), data augmentation (third row) and
adversarial classifier (fourth row). On the left column,
the data are generated with z = ⇡

4 , while on the right
column, the data are generated with z = ⇡

2 . The red
dot indicates the maximum likelihood estimate which
coincides with the true value of µ, z in each case. Note

that the z-axis scale is not uniform in all figures.
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(a) Data generated with z = ⇡
4 .

(b) Data generated with z = ⇡
2 .

FIG. 13: The profile likelihood maxz L(µ, z) as a
function of the parameter of interest, µ for likelihoods

calculated with templates built from the various
classifiers in the auxiliary measurement study. The
baseline classifier assumes z = ⇡

4 , and matches the
performance of the uncertainty-aware classifier in data
generated with z = ⇡

4 (top). In data generated with
z = ⇡

2 , the power of all classifiers other than the
uncertainty-aware classifier become significantly weaker
despite a better constraint on z compared to Sec. IV.
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Appendix B: Gaussian Example with Auxiliary
Measurement of z

A study is performed by replacing the prior on z in
Eq. 4 with a simultaneous auxiliary measurement. For
simplicity the auxiliary measurement is of a Gaussian
distribution with mean at zT and standard deviation of
0.5. 105 events uniformly weighted 0.1 are generated at
each of the 21 values of z. The negative log-likelihood
then reads,

� logL(µ, z|{xi})

= �
nbinsX

j=1


Nj · log (µsj + bj) � µsj � bj � log(�(Ni))

�

�
mbinsX

k=1


N

aux
k · log (azk) � a

z
k � log(�(Naux

k )

�
,

(B1)

where a
z
k is the number of events expected in bin k of

the auxiliary measurement for zT = z and N
aux
k is the

number of events actually observed in that bin. Four
bins are used to construct the template and observed
histograms for the auxiliary measurement.

The classifiers described in Sec. IV are re-used for this
study, no re-training is required. The likelihood scans
for the various approaches are shown in Fig. 12. For data
generated at z = ⇡

2 all approaches can exclude z = 0 since
the auxiliary measurement constrains z much more than
the prior used in Sec. IV; Fig. 5. The profile likelihood
in Fig. 13 shows that although the curves are narrower
compared to Fig. 6, the overall conclusions discussed in
Sec. IV remain valid.

Appendix C: Tests at µ = 2 for Physics Example

The comparison of the four approaches was also per-
formed for data where the true value of the parameter
of interest µ is 2. The profile likelihoods in Fig. 14 show
that the conclusions of Sec. V remain valid.

Simplistic auxiliary measurement of  


No need to re-train any network, change only in likelihood 
computation step


All methods provide improved limits on  if Z is tightly 
constrained


Aware classifier still best one to use

zT

μ
Measure Z

Measure Z

Prior on Z

Baseline classifier trained on nominal

Now excludes wrong z 
confidently
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Test performance for “observed” datasets at μ = 2

In every case the Aware Classifier is as good as the optimal one, no other technique 
matches its performance everywhere

18

(a) Systematic Down Data (b) Nominal Data (c) Systematic Up Data

FIG. 14: Physics Dataset: Profiled NLL curves for all four classifiers evaluated on a systematic down (zT = 0.8), b
nominal data (zT = 1.0) and c systematic up data (zT = 1.1) where the true value of µ is 2. Narrower curves

indicate more precise measurements having accounted for systematic and statistical uncertainties.



41

Take home message

• Training a uncertainty aware classifier and profiling over the nuisance parameter provides 
performance similar to a locally optimal classifier


• This prescription can also handle auxiliary measurements of the nuisance parameter 
straightforwardly by combining the likelihoods


• Not a black-box procedure: Can also study impact of untrained systematics on sensitivity 


• Solution scales to real physics dataset, easy to integrate into ATLAS/CMS chain
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