CBM performance for (multi-)strange hadron measurements using Machine Learning techniques

Shahid Khan, Olha Lavoryk, Oleksii Lubynets, Viktor Klochkov, Andrea Dubla, Ilya Selyuzhenkov

for the CBM Collaboration

- The production of strange guarks is sensitive to the properties of created matter in heavy-ion collisions
- CBM, due to its high interaction rate capability, has the possibility of reconstructing rare multi-strange particles and hypernuclei
- Λ hyperon is the most abundantly produced strange baryon at FAIR energies
- For CBM performance studies use, collisions generated with URQMD and DCM-QGSM-SMM:
 - Au+Au collisions at $p_{beam} = 12A \text{ GeV/}c (\sqrt{s_{NN}} = 4.93)$, mbias, 600k, Multiplicity bin (200-400)
- CBM simulation: GEANT4 Monte Carlo, CA tracking, KFParticle within CbmRoot framework

$\Lambda^0 \rightarrow p + \pi^-$ decay reconstruction parameters:

- Variables associated with tracks are used for the optimization of selection criteria:
 - χ^2_{prim} , DCA, χ^2_{qeq} , L/ Δ L

Selection criteria are optimized multi-dimensionally, non-linearly and in an automatized way with Machine Learning algorithms

Boosted Decision Trees (XGBoost Library) Implementation & Yield extraction

Data preparation and model deployment:

- DCM-QGSM-SMM sample as simulated data (MC signal in the 5σ around peak)
- UrQMD sample is treated as experimental data (combinatorial background outside the peak region)
- BDT model is trained and tested on separate A candidate samples
- Apply the XGB trained-tested model on 600k events of URQMD (yield extraction) and DCM (efficiency calculation) 0
 - best BDT is selected on Approximate Median Significance (AMS)

Yield Extraction Procedure:

- Signal shape: Double Sided Crystal Ball (DSCB)
- Background shape: 2nd order polynomial

Performance of the Λ yield extraction

Corrected yield of primary Λ (black circles) reproduces simulated input (blue triangles)

10-20% excess in the extracted Λ yield (red squares) \rightarrow requires feed-down correction

Outlook

- Multi-classifier BDT to separate primary and secondary Λ
- Evaluate systematic uncertainties
 - XGB selection variation
 - Yield extraction procedure
- ML application for yield measurement for $K_s^0 \to \pi^+\pi^-$

 $\times 10^3$

 $p_{\tau} = [0.6, 0.8]$ (full) & [0.8, 1.0] (empty)

Back up

SQM Proceedings

E-Reconstruction

Distribution of True signal and background in XGB Selected Signal

Distribution of MC signal (pure signal) and background in the XGB selected signal

XGB performance for Λ candidates selection

Input for efficiency (p_{τ}, y) calculation

Yield Extraction

Double Sided Crystal Ball (DSCB), Gaussian with power law tails, function is used for signal and 2nd order polynomial for background approximation:

- 1. Fit DSCB on MC data in 4σ around the mean
- 2. Exclude signal region (m<1.108 & m>1.13) and fit background with *pol2(m)*
- 3. Use DSCB+*pol2* as a fit function on the total range of data and initialize the fit parameters by step 1 and 2

Divide (p_T,y) phase space into 15x15 bins

Step 3

parameters of the gaussian

Co-efficient

parameters of the left power law tail

parameters of the right power law tail

 $A_0 \times e^{-u^2/2}$

 $A_0 \times A_1 (B_1 - u)^{-n_1}$

 $A_0 \times A_2 (B_2 - u)^{-n_2}$

Variables inside the fitting function

 $A_1 = (n_1 a_1)^{n_1} \times e^{-a_1^2/2}$

 $A_2 = (n_2 a_2)^{n_2} \times e^{-a_2^2/2}$

Parameters' bounds

 $B_1 = n_1/a_1 - a_1$

 $u = (x - 1.1157 - \mu)/\sigma$

 $B_2 = n_2/a_2 - a_2$

11

 $a_1[0,10]$; $n_1[0,100]$; $a_2[0,10]$; $n_2[0,100]$;

 $\mu \& \sigma$

 $a_1 \& n_1$

 $a_2 \& n_2$

Parameters of the fitting function

If u < -a₁ then If $u \ge -a_1 \& u < a_2$

If u ≥ a₂ then

Conditions