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• The HCAL Data is utilized for various physics analyses--from low luminosity to high pile-up environment.

• Our on-going effort DEtector System Monitoring Diagnostics and Prognostics (DESMOD) for the HCAL 

via ML models.

• DESMOD-HEngCCM: Anomaly Detection (AD) and Prediction with output explanation from multivariate 

diagnostics sensors [1]

• DESMOD-DQMAD: AD for the HCAL Endcap (HE) channels monitoring from DQM occupancy maps (this 

talk)

• The DQM of the HCAL of the CMS aims to guarantee high-quality physics data through 

• Online monitoring generates set of histograms following data acquisition.

• Offline monitoring is used to certify data quality.

[1] https://ieeexplore.ieee.org/abstract/document/9687034

Introduction

The HCAL has 3D spatial Digioccupancy maps, 𝑖𝜂 × 𝑖𝜙 × 𝑑𝑒𝑝𝑡ℎ .
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https://ieeexplore.ieee.org/abstract/document/9687034


• The Digioccupancy Maps of the HCAL:

• Contains a digi or particle hit record of a data-taking sensor (aka channel) of the detector.

• Has 3D spatial map data, 𝒊𝜼 × 𝒊𝝓 × 𝒅𝒆𝒑𝒕𝒉 .
• Each pixel in the occupancy map belongs to a HCAL channel.

• Potential abnormal channels can be spotted from the occupancy map.

• Challenge: lack annotated anomalies covering all possible anomalies shapes and sizes—challenging to 

anticipate all possible failure modes.

• Semi-/Un-supervised ML as potential solution: robust anomaly detection (AD) and localization

Motivation: ML4DQM

RED: Bad Quality Channels
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DQM-HCAL 
Challenges

Temporal AD

• Faulty channels persists over time

• AD within temporal context

DQM-HCAL Data

• 3D histogram maps

• High dimensional spatial data

• Detector channels share common RBX

DQM Histogram Map 
Normalization

• Dependency on experiment settings 
(e.g. Luminosity, Event number, etc.)

Degrading Channels

• May impact physics data quality 

• Relevant for Predictive Maintenance (PdM)

Motivation: ML4DQM - HCAL
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In Oct 2021, Run346247

• Issue: Non-uniformity in the HE Digi-

occupancy distributions.

• Cause: improperly tuned SiPMs Bias

Voltage for HEP06, 07, and 10 sectors

HBHE DIGI occupancy Map [2]

Automated AD with ML model has the potential to detect such faults instantly.

[2]https://indico.cern.ch/event/1141023/contributions/47

91854/attachments/2421439/4144738/hcal_pfg_cmswe

ek_apr2022.pdf

https://indico.cern.ch/event/1141023/contributions/4791854/attachments/2421439/4144738/hcal_pfg_cmsweek_apr2022.pdf


Anomaly Detection Mechanism: ML4DQM for the HE
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3D digioccupancy

(in a time window T)

3D digioccupancy

(in a time window T)

Rec. Error (Anomaly Score)

Semi-supervised 

Spatio-Temporal Autoencoder Model

Dead Channels

High Score for the 

Anomalous Channels Detected Anomaly

AD Decision

Output Reconstructed ST dataInput ST Data

Reconstruction Error

• Autoencoder (𝓕): spatio-temporal 𝛾 data (𝑋) 

reconstruction. 

• Intuition: 𝓕 trained on healthy maps would 

struggle to reconstruct anomalies and thus, will 

higher reconstruction error.

Input: 𝑿 ∈ ℝ𝑇× 𝑁𝑖𝜂× 𝑁𝑖𝜙×𝑁𝑑×𝑁𝑓

Output: ഥ𝑿 ∈ ℝ𝑇× 𝑁𝑖𝜂× 𝑁𝑖𝜙×𝑁𝑑×𝑁𝑓

ഥ𝑿 = 𝓕𝒅 (𝓕𝒆 𝑿 )

Training loss function (MSE):  

𝓛 𝒙𝒊, ഥ𝒙𝒊 = 𝒙𝒊 − ഥ𝒙𝒊 𝟐
𝟐

Anomaly Score with Rec. Correction: 𝒂𝒊 =
𝒆𝒊

𝝈𝒊

Where 𝒂𝑖 is a standardize reconstruction error of 𝒆𝒊
𝒆𝒊 = |𝒙𝒊 − ഥ𝒙𝒊|

𝝈𝒊 is std the reconstruction error for the 𝒊𝒕𝒉 channel

estimated from the training set.

Anomaly Decision:   𝑨𝑫 𝒂𝒊 = 𝒂𝒊 > 𝒌, single 

tunable threshold 𝒌 for all channels.
DESMOD-DQMAD Model



Preprocessing: Digioccupancy Map Normalization

• The digioccupancy value (𝜸):

• is number of digi per channel in a given LS.

• is determined by the experiment luminosity 𝝃 and

number of events 𝑵𝒆 settings.

𝛾 𝑐 ∈ 0, 𝑁𝑒
• 𝜸 Normalization Regression Model (DNN):

• Deep regression model 𝓡 to harmonize the

variation in the 𝝃 and 𝑵𝒆 at each HCAL depth.

• Normalization enables training ML models with

smaller datasets with effective generalization for

Runs with previously unseen experiment settings.

Non-linearity in the LHC:

Unusual high Number of Events for low 

Luminosity

𝜸 𝐢s depends on 𝝃 and 𝑵𝒆

Where:

• 𝛾𝑙 is total 𝛾 per depth at 𝑙𝑡ℎ LS. 

• ො𝛾 (𝑙, 𝑐) is the normalized 𝛾 value of the 

channel 𝑐 at 𝑙𝑡ℎ LS. 

• 𝐾 is a scaling factor to compensate the 

difference in the number of channels 

per depth.
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Total digioccupancy per LS 

of several runs



• Model(DESMOD-DQMAD):Multilayered networks semi-supervised autoencoder for ML4DQM AD of the HE.

• Convolutional, graph, and recurrent neural networks are integrated to capture spatial and temporal

characteristics.

• Euclidean and non-Euclidean spatial characteristics of HE digioccupancy map:
• Conv3D: Proximally arranged channels (Euclidean distance) are exposed to particle hits around their region.

• GCN: Channels share a common backend RBX that results in a non-Euclidean spatial distance.

AD Model Design with Graph Autoencoder 
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GCN:  Graph Convolutional Network

Conv3D: 3D Convolutional Network

Deconv3D: 3D Deconvolutional Network

BN: Batch Normalization

Graph Network 𝑮 𝝊, 𝜺 to learn shared local

variations due interconnected backend

circuit and environmental impact in a

common RBX.

The 𝜐 denotes the HE channel nodes and 𝜀 is

the edges in adjacency matrix 𝐴, respectively.

An edge 𝑢, 𝑣 ∈ 𝜀 connects a pair of nodes

𝑢 𝑎𝑛𝑑 𝑣 in the same RBX.

Channels in a given RBX share backbone :

• Environmental factors: temperature and

humidity inside RBX.

• Local variations per RBX: intrinsic

variations of the custom-built electronic

components.



• Dataset: /ZeroBias/Run2018*-v1/RAW 
• Golden JSON lumis: “GOOD” data , around 20K 3D digioccupancy histogram map (𝜸) of HCAL Endcap (HE).

• Around 1750-2250 events per LS and luminosity ranging up to 0.4 𝑷𝑫−𝟏.

• Training set (𝐿𝑆 ∈ [𝟏, 𝟓𝟎𝟎]): ~10K GOOD histograms

• Validation set (𝐿𝑆 ∈ [𝟓𝟎𝟎, 𝟏𝟓𝟎𝟎]): ~10K histograms

• 10K histograms with synthetic anomalies (dead (𝜸 = 𝟎) and hot (𝜸 = 𝟐 ∗ 𝜸𝒆𝒙𝒑𝒆𝒄𝒕𝒆𝒅) anomalies, each 5K)

• 5K histograms with synthetic degrading anomaly (𝜸 = 𝑫 ∗ 𝜸𝒆𝒙𝒑𝒆𝒄𝒕𝒆𝒅).

• Decaying factor 𝑫 = [𝟎. 𝟖, 𝟎. 𝟔, 𝟎. 𝟒, 𝟎. 𝟐, 𝟎. 𝟎].

• Model setting:

• Sliding time-window size: 5 LSs

• Temporal Anomaly Evaluation: 

• Anomalies affecting only an isolated LS. 

• Anomalies affecting consecutive LSs in a time window: 

• Anomaly score is estimated from mean absolute error (MAE) in time window.

Model Training and Validation

9



• 10K histograms with dead and hot channels, monitored ~32M

channels (335K (1.05%) anomalous) for each anomaly type.

Model Evaluation: Anomaly on Isolated LS
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Sample 𝜸 histogram map with

DEAD channel anomaly
Sample 𝜸 histogram map with

HOT channel anomaly

Reconstruction error distribution

DEAD channel anomaly
Reconstruction error distribution

HOT channel anomaly

The proposed AD system has achieved a promising high performance with precise 

localized detection of the faulty channels, i.e., 0.99 precision while detecting 99% 

of the 335K faulty channels.

P- Precision, R- Recall, F1 – F1 score, FPR– False Positive Rate



• 10K histograms with dead and hot channels in a time window of 5 

LSs (50K), monitored ~156M channels (1.68M (1.05%) anomalous) 

for each anomaly type. 

• Anomaly scores are estimated using mean absolute error (MAE) 

across the LSs in a time window.

Model Evaluation: Time Persistent Anomaly
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Sample 𝜸 histogram maps with HOT channel anomaly persisted across LSs

Reconstruction error distribution

DEAD channel anomaly
Reconstruction error distribution

HOT channel anomaly

Sample 𝜸 histogram maps with DEAD channel anomaly persisted across LSs

Time-persistent anomalies are easier to detect as the 𝑭𝑷𝑹 improves by 13%-

23% and 28%-40% for the dead and hot anomalies, respectively, as compared 

to detecting anomalies affecting isolated LSs.

Generally, capturing 99% of the anomaly is relatively more challenging as 

certain  channels may have a very small expected 𝜸.



• 5K histograms with degrading to death channel anomalies in a time window of 5 LSs (25K), monitored ~156M channels (1.74K

(1.11%) anomalous)

• Degrading anomaly is when 𝜸 = 𝑫 ∗ 𝜸𝒆𝒙𝒑𝒆𝒄𝒕𝒆𝒅), with decaying factor 𝑫 = 𝟎. 𝟖, 𝟎. 𝟔, 𝟎. 𝟒, 𝟎. 𝟐, 𝟎. 𝟎 ,where 𝐃 =

𝟎 denotes 𝐚 𝐝𝐞𝐚𝐝 𝐜𝐡𝐚𝐧𝐧𝐞𝐥.
• 1K histograms for each 5K histograms.

Model Evaluation: Degrading Channels, Time Persistent 
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• The relatively lower precision for the health rate of 80% signifies there are still a very few anomalous 

channels that are challenging to capture. 

• This is because a channel operating at 80% is an inlier to the normal operating ranges, and it 

becomes even more challenging if the expected 𝜸 is very low. 

• However, the performance significantly improves by 88% and 95% when the percentage of the 

target anomaly to captured is reduced to 95% and 90%, respectively.

• Promising high performance in detecting the degrading faulty channels. 

• The FPR to capture 99% of the anomalies is 2.988%, 0.155%, 0.022%, 0.002%, and 0.001% when 

channels operate at 80%, 60%, 40%, 20%, and 0% of its expected capacity, respectively. 

Health Rate = Decay Factor



• The benchmark models follow overall similar autoencoder architecture as the proposed DESMOD-

DQMAD, but have different modeling layers. 

• Integration of the graph network has a significant performance gain from 1.6 to 3.9X. 

• Temporal models have achieved a 3 to 5-fold boost over the non-temporal spatial AD model, 

CNN+VAE.

• For channel degraded by only 20%, the DESMOD-DQMAD improvement is by 25X.

• Spatio-temporal learning mechanism enhances the context to capture degrading channels.

Comparison with Benchmark Models on Degrading Channels
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CN: convolutional network,

GN: graph network,

BiLSTM: bidirectional LSTM,

GRU: gated recurrent unit.

CNN+VAE: the RNN blocks are replaced with FC

layers.

DESMOD-DQMAD TemporalGraph + Temporal Non-Temporal



Real Channel Anomalies Detected with DESMOD-DQMAD Model

Run: 324841

Anomaly Types: Dead + Degraded Channels

Bad channels: 

'ieta=17, iphi=71, depth=3',

'ieta=18, iphi=71, depth=3',

'ieta=18, iphi=71, depth=4',

'ieta=18, iphi=71, depth=5',

'ieta=28, iphi=71, depth=4’
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• The proposed DESMOD-DQMAD model detected REAL bad channels in the HE.

Number of affected LS: 

52

Dead channel anomaly:

LS: 6-56

Degraded channel anomaly:

LS: 57



Detected Channel Anomalies:  Detection
Run: 324841, LS: 10, Dead Channel
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LS-10, digioccupancy map

LS-10, Anomaly Flags (RED)

Previously 

Known Bad 

Channels

New Dead 

Channels



Detected Channel Anomalies: Fault Localization
Run: 324841, LS: 10, Dead Channels

16

LS-10, digioccupancy map

LS-10, Anomaly Score: higher scores are localized on fault affected channels 

Previously 

Known Bad 

Channels

New Dead 

Channels



Detected Real Anomalies: Degrading
Run: 324841, LS: 57, Degraded Channels
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LS-10, digioccupancy

LS-10, Anomaly Score: higher scores are localized on fault affected channels 

Previously Known 

Bad Channels

Degrading Bad Channels:

The digioccupancy is much lower than 

expected



Detected Channel Anomalies: Central DQM vs DESMOD-DQMAD 
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HEPHEM HEPHEM HEPHEM

• The Central DQM has also spotted the bad channels 

through analysis at the end of the run.

• Our approach detects the bad channels on streaming 

instantly in a LS granularity.

The Central DQM: uses run granularity detection 

Run: 324841

DESMOD-DQMAD based on LS level detection

Run: 324841



• Model Training:

• The models was developed with PyTorch and trained on four GPUs of NVIDIA Tesla V100 SXM3 32 GB 

and Intel(R) Xeon(R) Platinum 8168 CPU @2.70GHz. 

• Training time: around 45 sec/epoch with batch size B=8.

• Model Inference:

• Inference time on a single GPU is around 𝝁 = 𝟎. 𝟎𝟓 ± 𝝈 = 𝟎. 𝟎𝟎𝟔 seconds where 𝝁 and 𝝈 is the median 

and a standard deviation of the inference time.

Computational Complexity
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• The proposed model has achieved promising performance in capturing several types of anomalies from 

the digioccupancy histogram map. 

• Our study expands the effort on ML4DQM on temporal, digioccupnacy map normalization, learning non-

Euclidean spatial behavior, and degrading channel detection.

• The model's capability in detecting degrading channels will aid in prognostics and predictive intervention.

• The progress is currently on model integration in to the DQM production after fine tuning the model with 

occupancy maps of RUN-III.

• Previous DESMOD models are hosted in http://www.demond.cern.ch for pre-testing.

Summary
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http://www.demond.cern.ch/


BACK-UP



• GCN is performs convolution-like operations directly on graphs. 

• Given a graph 𝒢(𝒱, ℰ) data structure consisting of nodes 𝒱 and edges ℰ components, the graph convolution 

operation produces a normalized aggregation of the node feature of the neighbors:

• The layer-wise propagation mechanism:

𝓝(𝒊) is the set of one-hop neighbors of the 𝑖𝑡ℎ node 𝑣𝑖 with self-looping to include 𝑣𝑖 in the set.

𝒅𝒊 is the number of neighboring nodes and used as a normalization constant

𝝈 ⋅ denotes an activation function such as 𝑹𝒆𝑳𝑼 ⋅ = 𝒎𝒂𝒙 (𝟎, ⋅)

𝒉𝒊
𝒍 ∈ ℝ𝟏×𝑴 is the node feature vector of 𝒊𝒕𝒉 node at the 𝒍𝒕𝒉 layer, where 𝑴 is the feature dimension. 𝐻 is matrix equivalent.

𝑾(𝒍) is a shared weight matrix for node-wise feature transformation

Graph Convolutional Network (GCN)
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With symmetric normalized Laplacian matrics



• Previous efforts on ML4DQM:

• Adrian et al. (2018) Detector monitoring with ANN at the CMS experiment (for the ECAL) [1]

• Azzolin et al. (2019) Improving DQM via a partnership between the CMS and industry (for the ECAL) [2]

• Abhirami Harilal (2021) ML based AD for the ECAL online DQM [3]

[1]https://arxiv.org/abs/1808.00911

[2]https://doi.org/10.1051/epjconf/201921401007

[3]https://indico.cern.ch/event/1045606/contributions/4458491/attachments/2288758/3890699/ML4DQM_MLTownhall_28July21AbhiramiH.pdf

Previous Efforts on ML4DQM
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