

Spatio-Temporal Anomaly Detection for the DQM of the CMS Experiment via Graph Networks

Talk for 5th IML Workshop

Speakers:

Mulugeta W. Asres (UiA), Long Wang (CERN), and David Yu (CERN)

HCAL DPG and HCAL Ops Team

Mulugeta W. Asres University of Agder, Norway May 11, 2022

Topics

Introduction

Motivation: ML4DQM

ML4DQM for the HCAL: Research Gaps

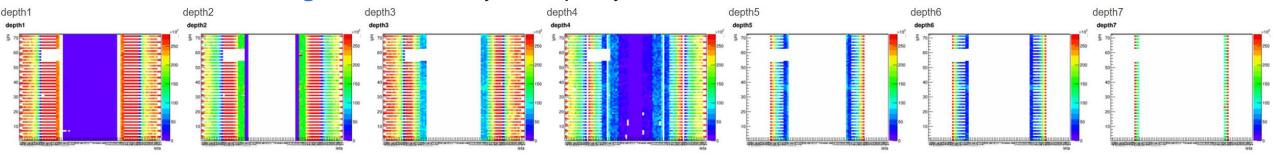
Anomaly Detection Mechanism: ML4DQM for the HE

- Preprocessing: Digioccupancy Map Normalization
- Model Evaluation on Synthetic Anomalies
- Comparison with Benchmarks Models
- Detection of Real HE Channel Anomalies
- Computational Complexity

Summary

Introduction

- The HCAL Data is utilized for various physics analyses--from **low luminosity** to **high pile-up** environment.
- Our on-going effort DEtector System Monitoring Diagnostics and Prognostics (DESMOD) for the HCAL via ML models.
 - **DESMOD-HEngCCM**: Anomaly Detection (AD) and Prediction with output explanation from multivariate diagnostics sensors [1]
 - DESMOD-DQMAD: AD for the HCAL Endcap (HE) channels monitoring from DQM occupancy maps (this talk)
- The DQM of the HCAL of the CMS aims to guarantee high-quality physics data through
 - Online monitoring generates set of histograms following data acquisition.
 - Offline monitoring is used to certify data quality.

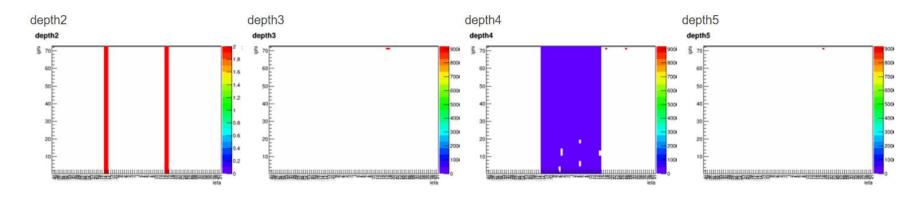


The HCAL has 3D spatial Digioccupancy maps, $[i\eta \times i\phi \times depth]$.

[1] https://ieeexplore.ieee.org/abstract/document/9687034

Motivation: ML4DQM

- The Digioccupancy Maps of the HCAL:
 - Contains a digi or particle hit record of a data-taking sensor (aka channel) of the detector.
 - Has 3D spatial map data, $[i\eta \times i\phi \times depth]$.
 - Each pixel in the occupancy map belongs to a HCAL channel.
 - Potential abnormal channels can be spotted from the occupancy map.



RED: Bad Quality Channels

- Challenge: lack annotated anomalies covering all possible anomalies shapes and sizes—challenging to anticipate all possible failure modes.
- Semi-/Un-supervised ML as potential solution: robust anomaly detection (AD) and localization

Motivation: ML4DQM - HCAL

DQM-HCAL Data

- 3D histogram maps
- High dimensional spatial data
- Detector channels share common RBX

DQM Histogram Map Normalization

• Dependency on experiment settings (e.g. Luminosity, Event number, etc.)

Temporal AD

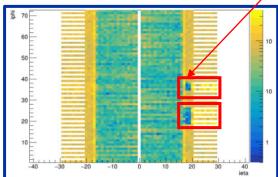
- Faulty channels persists over time
- AD within temporal context

DQM-HCAL Challenges

Degrading Channels

- May impact physics data quality
- Relevant for Predictive Maintenance (PdM)

HBHE DIGI occupancy Map [2]



In Oct 2021, Run346247

- Issue: Non-uniformity in the HE Digioccupancy distributions.
- Cause: improperly tuned SiPMs Bias Voltage for HEP06, 07, and 10 sectors

[2]https://indico.cern.ch/event/1141023/contributions/47 91854/attachments/2421439/4144738/hcal_pfg_cmswe ek_apr2022.pdf

Automated AD with ML model has the potential to detect such faults instantly.

Anomaly Detection Mechanism: ML4DQM for the HE

- Autoencoder (\mathcal{F}): spatio-temporal γ data (X) reconstruction.
- Intuition: F trained on healthy maps would struggle to reconstruct anomalies and thus, will higher reconstruction error.

Input:
$$X \in \mathbb{R}^{T \times N_{i\eta} \times N_{i\phi} \times N_{d} \times N_{f}}$$

Output: $\overline{X} \in \mathbb{R}^{T \times N_{i\eta} \times N_{i\phi} \times N_{d} \times N_{f}}$
 $\overline{X} = \mathcal{F}_{d} (\mathcal{F}_{e}(X))$

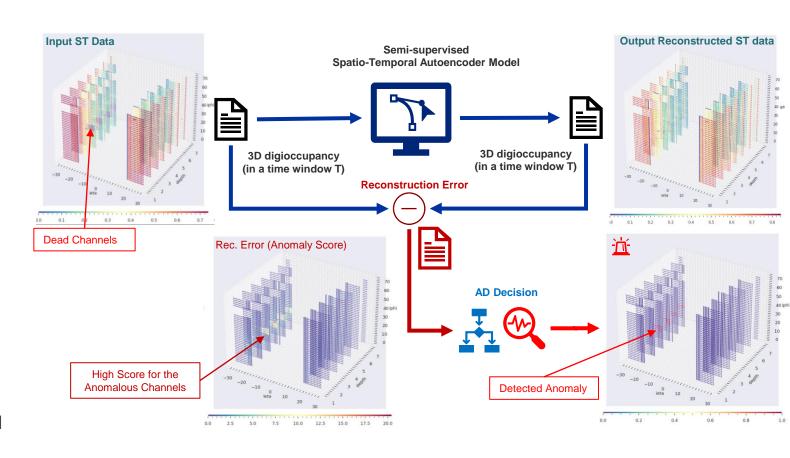
Training loss function (MSE):

$$\mathcal{L}(x_i, \bar{x_i}) = \|x_i - \bar{x_i}\|_2^2$$

Anomaly Score with Rec. Correction: $a_i = \frac{e_i}{\sigma_i}$ Where a_i is a standardize reconstruction error of e_i $e_i = |x_i - \overline{x_i}|$

 σ_i is std the reconstruction error for the i^{th} channel estimated from the training set.

Anomaly Decision: $AD(a_i) = a_i > k$, single tunable threshold k for all channels.



DESMOD-DQMAD Model

Preprocessing: Digioccupancy Map Normalization

- The digioccupancy value (γ):
 - is number of digi per channel in a given LS.
 - is determined by the experiment luminosity ₹ and number of events N_e settings.

$$\gamma(c) \in [0, N_e]$$

- γ Normalization Regression Model (DNN):
 - Deep regression model \mathcal{R} to harmonize the variation in the ξ and N_e at each HCAL depth.

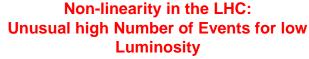
$$\bar{\gamma}_{l} = \underset{\mathbb{E}[(\gamma_{l} - \mathcal{R})^{2}]}{\arg \min} \left\{ \mathcal{R}(N_{e}, \xi) \right\}$$

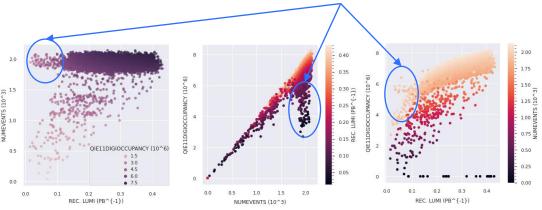
$$\gamma_{l} = \sum_{\forall c} \gamma(l, c)$$

$$\hat{\gamma}(l, c) = \frac{K * \gamma(l, c)}{\bar{\gamma}_{l}}$$

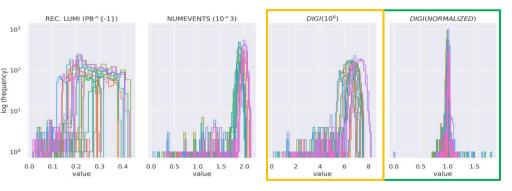
Where:

- γ_l is total γ per depth at l^{th} LS.
- $\hat{\gamma}$ (l, c) is the normalized γ value of the channel c at l^{th} LS.
- *K* is a scaling factor to compensate the difference in the number of channels per depth.
- Normalization enables training ML models with smaller datasets with effective generalization for Runs with previously unseen experiment settings.





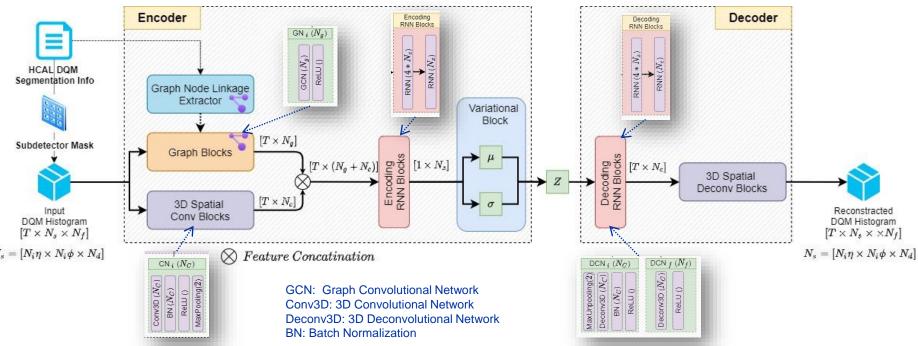
 γ is depends on ξ and N_e



Total digioccupancy per LS of several runs

AD Model Design with Graph Autoencoder

- Model(DESMOD-DQMAD): Multilayered networks semi-supervised autoencoder for ML4DQM AD of the HE.
- Convolutional, graph, and recurrent neural networks are integrated to capture spatial and temporal characteristics.
 - Euclidean and non-Euclidean spatial characteristics of HE digioccupancy map:
 - Conv3D: Proximally arranged channels (Euclidean distance) are exposed to particle hits around their region.
 - GCN: Channels share a common backend RBX that results in a non-Euclidean spatial distance.



Graph Network $G(v, \varepsilon)$ to learn shared local variations due **interconnected backend circuit** and **environmental impact** in a common RBX.

$$A(u, v) = \begin{cases} 1, & \text{if } RBX(u) = RBX(v) \\ 0, & \text{otherwise} \end{cases}$$

The v denotes the HE channel nodes and ε is the edges in adjacency matrix A, respectively. An edge $(u,v) \in \varepsilon$ connects a pair of nodes u and v in the same RBX.

Channels in a given RBX share backbone:

- Environmental factors: temperature and humidity inside RBX.
- Local variations per RBX: intrinsic variations of the custom-built electronic components.

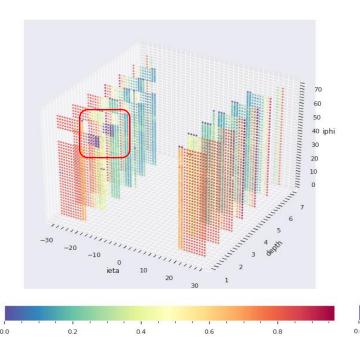
Model Training and Validation

- Dataset: /ZeroBias/Run2018*-v1/RAW
 - Golden JSON lumis: "GOOD" data, around 20K 3D digioccupancy histogram map (γ) of HCAL Endcap (HE).
 - Around 1750-2250 events per LS and luminosity ranging up to $0.4 PD^{-1}$.
- Training set $(LS \in [1, 500])$: ~10K GOOD histograms
- Validation set $(LS \in [500, 1500])$: ~10K histograms
 - 10K histograms with synthetic anomalies (dead ($\gamma = 0$) and hot ($\gamma = 2 * \gamma_{expected}$) anomalies, each 5K)
 - **5K** histograms with synthetic **degrading** anomaly $(\gamma = D * \gamma_{expected})$.
 - Decaying factor D = [0.8, 0.6, 0.4, 0.2, 0.0].
- Model setting:
 - Sliding time-window size: 5 LSs
- Temporal Anomaly Evaluation:
 - Anomalies affecting only an isolated LS.
 - Anomalies affecting consecutive LSs in a time window:
 - Anomaly score is estimated from mean absolute error (MAE) in time window.

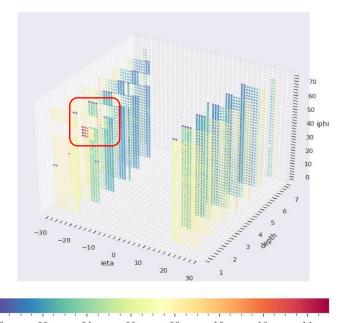
Model Evaluation: Anomaly on Isolated LS

10K histograms with dead and hot channels, monitored ~32M channels (335K (1.05%) anomalous) for each anomaly type.

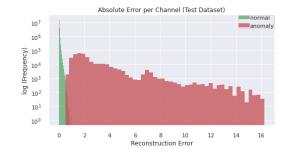
Sample γ histogram map with **DEAD** channel anomaly



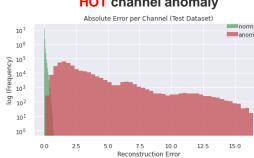
Sample γ histogram map with HOT channel anomaly



Reconstruction error distribution **DEAD** channel anomaly



Reconstruction error distribution HOT channel anomaly



Anomaly Type	Captured Anomalies	P	R	F1	FPR
Dead Channel	99%	0.999	0.99	0.995	6.722×10^{-6}
	95%	1.000	0.95	0.974	3.102×10^{-6}
	90%	1.000	0.90	0.947	2.068×10^{-6}
	99%	0.999	0.99	0.994	9.113×10^{-6}
Hot Channel	95%	1.000	0.95	0.974	1.939×10^{-6}
	90%	1.000	0.90	0.947	1.196×10^{-6}

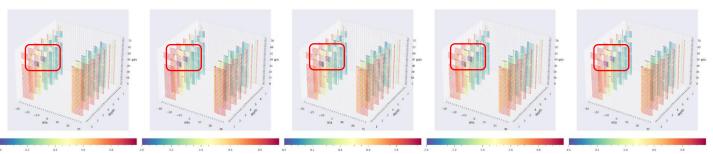
The proposed AD system has achieved a promising high performance with precise localized detection of the faulty channels, i.e., **0.99 precision** while detecting **99%** of the **335K faulty channels**.

P- Precision, R- Recall, F1 - F1 score, FPR- False Positive Rate

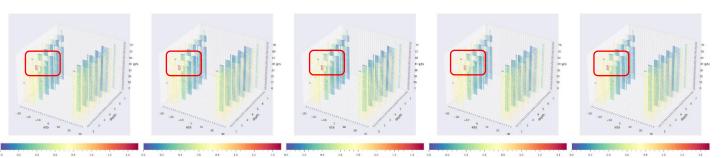
Model Evaluation: Time Persistent Anomaly

- 10K histograms with dead and hot channels in a time window of 5 LSs (50K), monitored ~156M channels (1.68M (1.05%) anomalous) for each anomaly type.
- Anomaly scores are estimated using mean absolute error (MAE) across the LSs in a time window.

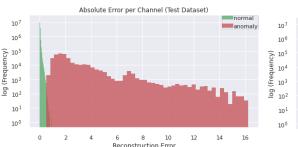
Sample γ histogram maps with DEAD channel anomaly persisted across LSs



Sample γ histogram maps with HOT channel anomaly persisted across LSs



Reconstruction error distribution DEAD channel anomaly



Reconstruction error distribution HOT channel anomaly

Anomaly Type	Captured Anomalies	P	R	F1	FPR
Dead Channel	99%	0.999	0.99	0.995	7.691×10^{-6}
	95%	1.000	0.95	0.974	2.715×10^{-6}
	90%	1.000	0.90	0.947	1.616×10^{-6}
Hot Channel	99%	0.999	0.99	0.995	5.461×10^{-6}
	95%	1.000	0.95	0.974	1.357×10^{-6}
	90%	1.000	0.90	0.947	7.756×10^{-7}

Time-persistent anomalies are easier to detect as the *FPR* improves by 13%-23% and 28%-40% for the **dead** and **hot** anomalies, respectively, as compared to detecting anomalies affecting isolated LSs.

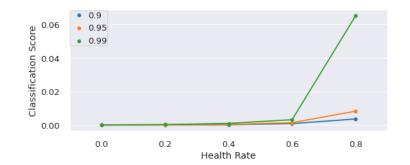
Generally, capturing 99% of the anomaly is relatively more challenging as certain channels may have a very small expected γ .

Model Evaluation: Degrading Channels, Time Persistent

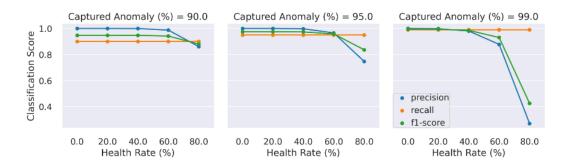
- 5K histograms with degrading to death channel anomalies in a time window of 5 LSs (25K), monitored ~156M channels (1.74K (1.11%) anomalous)
- **Degrading** anomaly is when $\gamma = D * \gamma_{expected}$, with decaying factor D = [0.8, 0.6, 0.4, 0.2, 0.0], where D = 0 denotes a dead channel.
- 1K histograms for each 5K histograms.

Health Rate = Decay Factor

Anomaly Type	Health Rate	FPR (90%)	FPR (95%)	FPR (99%)
Decaying Channel	80%	1.636×10^{-3}	3.614×10^{-3}	2.988×10^{-2}
	60%	1.329×10^{-4}	3.834×10^{-4}	1.550×10^{-3}
	40%	8.405×10^{-6}	2.764×10^{-5}	2.242×10^{-4}
	20%	2.263×10^{-6}	5.173×10^{-6}	2.505×10^{-5}
	0%	9.699×10^{-7}	1.778×10^{-6}	6.142×10^{-6}



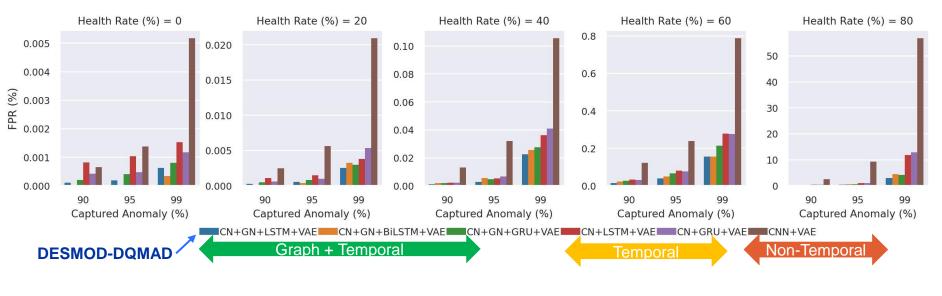
- Promising high performance in detecting the degrading faulty channels.
- The FPR to capture 99% of the anomalies is 2.988%, 0.155%, 0.022%, 0.002%, and 0.001% when channels operate at 80%, 60%, 40%, 20%, and 0% of its expected capacity, respectively.



- The **relatively lower precision** for the health rate of **80%** signifies there are still a very few anomalous channels that are challenging to capture.
 - This is because a channel operating at **80%** is an **inlier** to the normal operating ranges, and it becomes even **more challenging** if the expected γ is very low.
 - However, the performance **significantly improves** by **88%** and **95%** when the percentage of the target **anomaly to captured** is reduced to **95%** and **90%**, respectively.

Comparison with Benchmark Models on Degrading Channels

- The benchmark models follow overall similar autoencoder architecture as the proposed DESMOD-DQMAD, but have different modeling layers.
- Integration of the graph network has a significant performance gain from 1.6 to 3.9X.
- Temporal models have achieved a 3 to 5-fold boost over the non-temporal spatial AD model, CNN+VAE.
 - For channel degraded by only 20%, the DESMOD-DQMAD improvement is by 25X.
- Spatio-temporal learning mechanism enhances the context to capture degrading channels.



CN: convolutional network, GN: graph network, BiLSTM: bidirectional LSTM, GRU: gated recurrent unit.

NN+VAE: the RNN blocks are replaced

CNN+VAE: the RNN blocks are replaced with FC layers.

Real Channel Anomalies Detected with DESMOD-DQMAD Model

The proposed **DESMOD-DQMAD model** detected **REAL bad channels** in the HE.

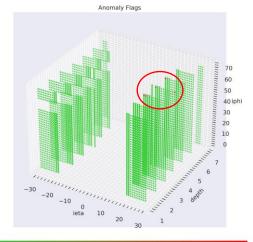
Run: 324841

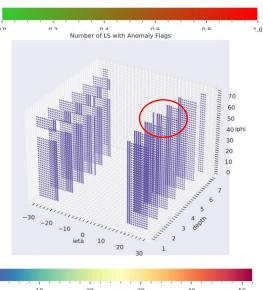
Anomaly Types: Dead + Degraded Channels

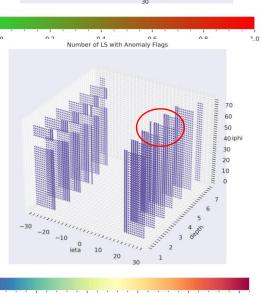
Number of affected LS:

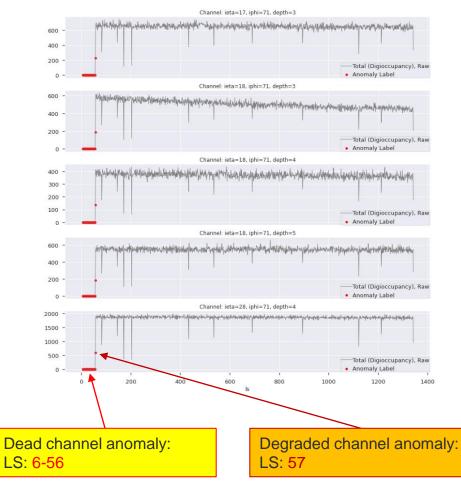
Bad channels:

'ieta=17, iphi=71, depth=3', 'ieta=18, iphi=71, depth=3', 'ieta=18, iphi=71, depth=4', 'ieta=18, iphi=71, depth=5', 'ieta=28, iphi=71, depth=4'

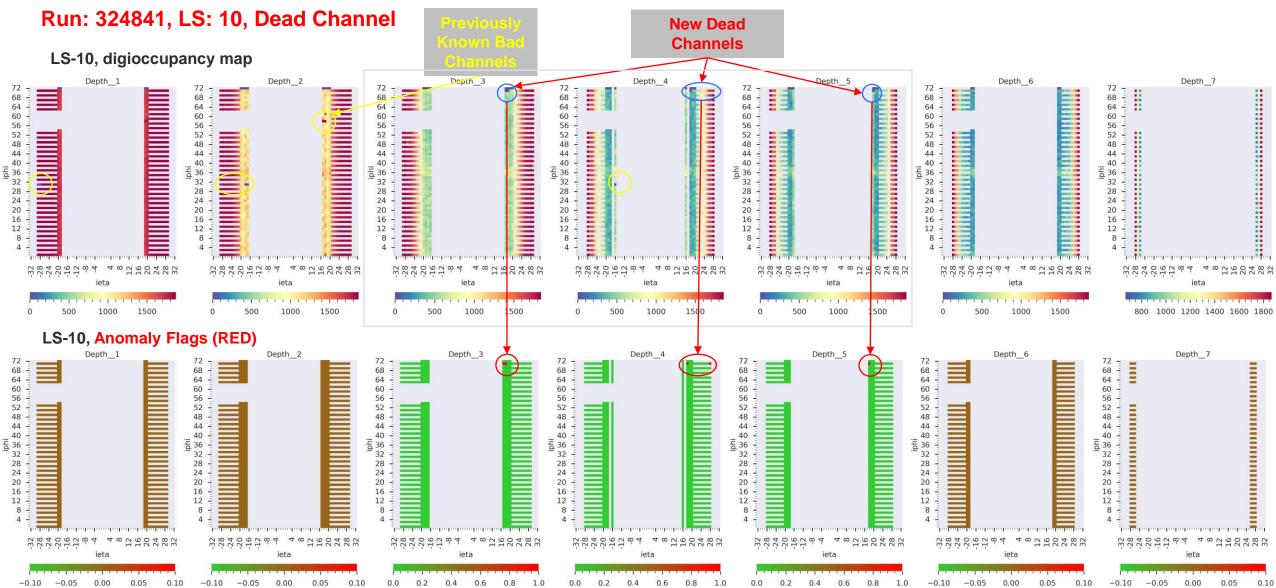




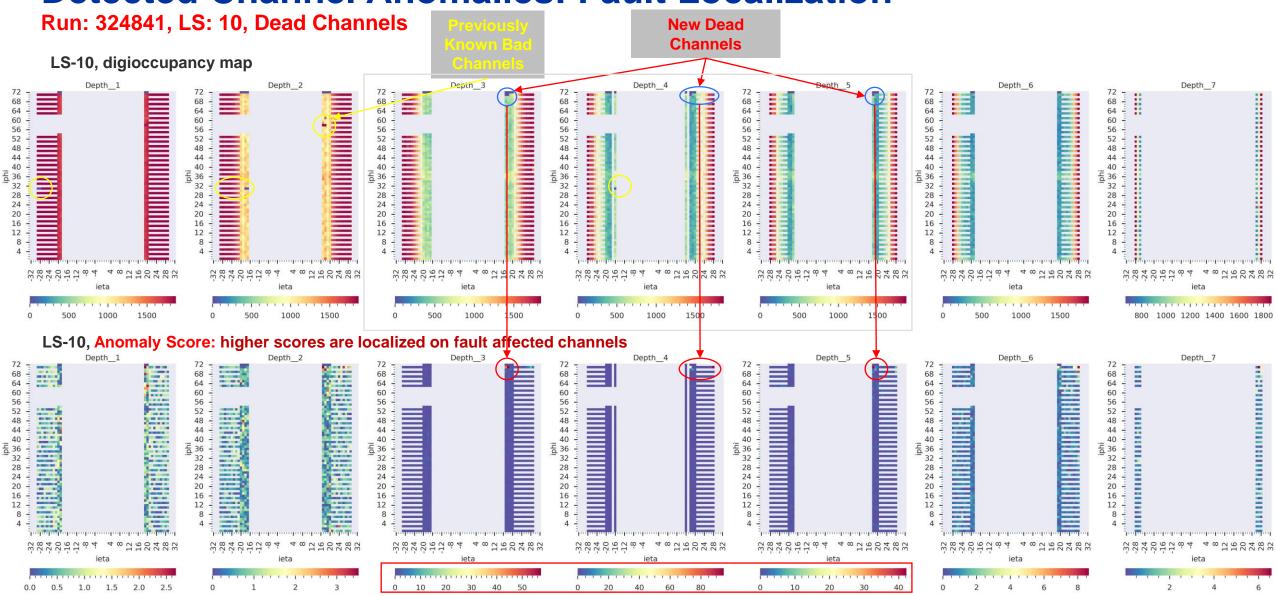


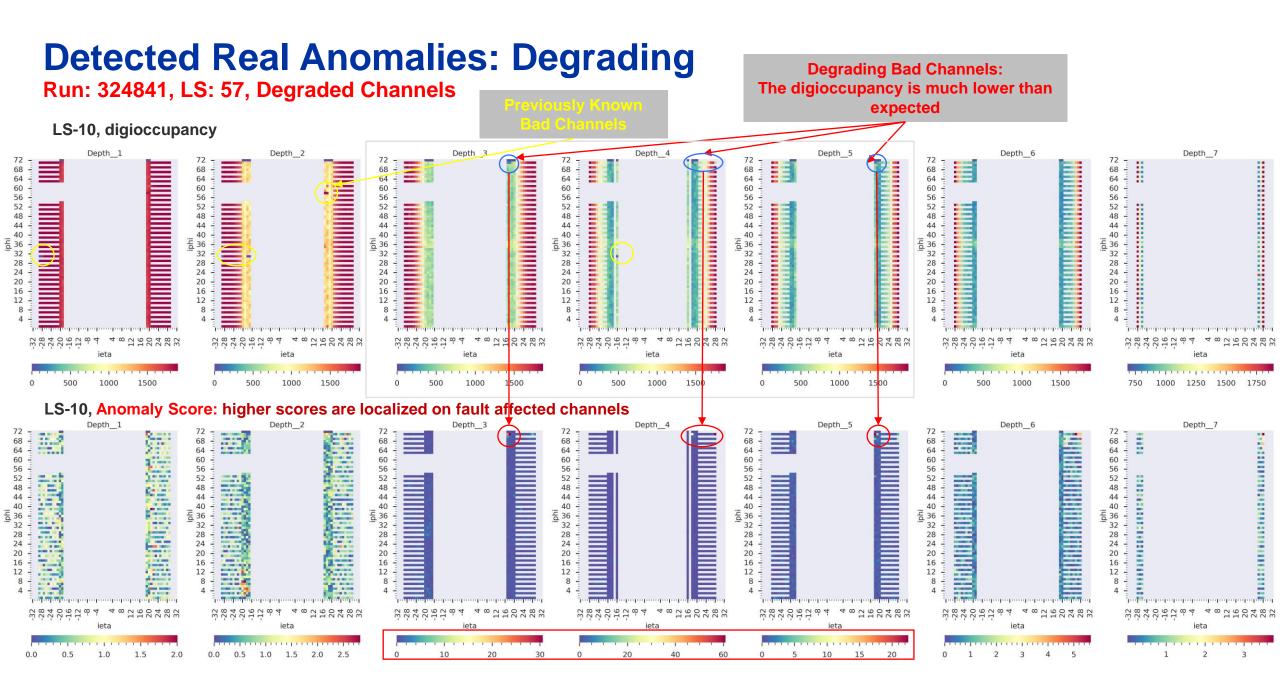


Detected Channel Anomalies: Detection



Detected Channel Anomalies: Fault Localization



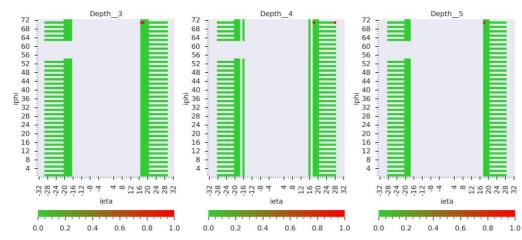


Detected Channel Anomalies: Central DQM vs DESMOD-DQMAD

- The Central DQM has also spotted the bad channels through analysis at the end of the run.
- Our approach detects the bad channels on streaming instantly in a LS granularity.

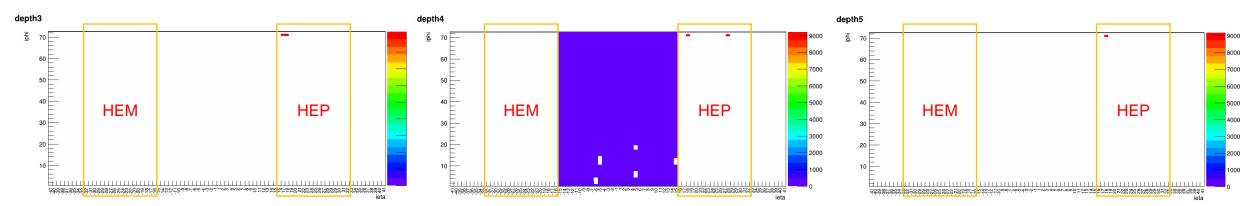
DESMOD-DQMAD based on LS level detection

Run: 324841



The Central DQM: uses run granularity detection

Run: 324841



Computational Complexity

Model Training:

- The models was developed with PyTorch and trained on four GPUs of NVIDIA Tesla V100 SXM3 32 GB and Intel(R) Xeon(R) Platinum 8168 CPU @2.70GHz.
- Training time: around 45 sec/epoch with batch size B=8.

Model Inference:

• Inference time on a single GPU is around $\mu = 0.05 \pm \sigma = 0.006$ seconds where μ and σ is the median and a standard deviation of the inference time.

Summary

- The proposed model has **achieved promising performance** in capturing several types of anomalies from the **digioccupancy histogram map**.
- Our study expands the effort on ML4DQM on temporal, digioccupnacy map normalization, learning non-Euclidean spatial behavior, and degrading channel detection.
- The model's capability in detecting degrading channels will aid in prognostics and predictive intervention.
- The progress is currently on **model integration** in to the DQM production after fine tuning the model with occupancy maps of RUN-III.
- Previous DESMOD models are hosted in http://www.demond.cern.ch for pre-testing.

BACK-UP

Graph Convolutional Network (GCN)

- GCN is performs convolution-like operations directly on graphs.
- Given a graph $G(V, \mathcal{E})$ data structure consisting of nodes V and edges \mathcal{E} components, the graph convolution operation produces a **normalized aggregation of the node feature of the neighbors**:
- The layer-wise propagation mechanism:

$$h_i^{(l+1)} = \sigma \left(W^{(l)} \frac{1}{d_i} \sum_{j \in \mathcal{N}(i)} h_j^{(l)} \right) \qquad H^{(l+1)} = \sigma \left(D^{-\frac{1}{2}} A D^{-\frac{1}{2}} H^{(l)} W^{(l)} \right) \quad D = diag \left(\sum_j A_{ij} \right)$$

With symmetric normalized Laplacian matrics

 $\mathcal{N}(i)$ is the set of one-hop neighbors of the i^{th} node v_i with self-looping to include v_i in the set.

 d_i is the number of neighboring nodes and used as a normalization constant

 $\sigma(\cdot)$ denotes an activation function such as $ReLU(\cdot) = max(0, \cdot)$

 $h_i^l \in \mathbb{R}^{1 \times M}$ is the node feature vector of i^{th} node at the l^{th} layer, where M is the feature dimension. H is matrix equivalent.

 $W^{(l)}$ is a shared weight matrix for node-wise feature transformation

Previous Efforts on ML4DQM

- Previous efforts on ML4DQM:
 - Adrian et al. (2018) Detector monitoring with ANN at the CMS experiment (for the ECAL) [1]
 - Azzolin et al. (2019) Improving DQM via a partnership between the CMS and industry (for the ECAL) [2]
 - Abhirami Harilal (2021) ML based AD for the ECAL online DQM [3]

[1]https://arxiv.org/abs/1808.00911

[2]https://doi.org/10.1051/epjconf/201921401007

[3]https://indico.cern.ch/event/1045606/contributions/4458491/attachments/2288758/3890699/ML4DQM_MLTownhall_28July21AbhiramiH.pdf

