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Differentiable Simulations in a Nutshell TUm

Discretized PDE & with phase space states S

1.0 3.2

- 2.8

Learn via gradient (0.2°/0s)"

E.g., with loss L and s = NN(x | 0) %o

osTop! oL !
00 0s 00X

Gradient is —n

Requires differentiable physics simulator for &

— Tight integration of numerical methods and learning process



Differentiable Simulations - Terminology TI.ITI

Differentiable PDE solver for &2 = “differentiable physics"
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e Adjoint method / differentiation
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e Reverse-mode / backward differentiation o

0.2

e Backpropagation
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Reducing Numerical Errors

“Solver-in-the-Loop”

PDE: & re @
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Reducing Numerical Errors

“Solver-in-the-Loop”
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Um et. al: Solver-in-the-Loop, Learning from Differentiable Physics to Interact with PDE-Solvers




Reducing Numerical Errors

Shift of Input Feature Distributions

Corrected Source
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Reducing Numerical Errors

Learning via Differentiable Physics

Correction via network for each unrolled simulation step (S | 0)

lteration
m-1

Full & evaluated at
training time

( ( (

|- ) 4
G(s|0) Adjoint 08, (6|0 Adjoint i 0s, | 6(5]|0) Adjoint
A N

Gradient of & via

lteration controlled discretization &
m+1

Um et. al: Solver-in-the-Loop, Learning from Differentiable Physics to Interact with PDE-Solvers



A few more Detalls... T|_|T|

Unsteady Wake Flow in 2D

o Setup: Reference is 4x

« 3000 frames training data,

Re € {98 .. 3125}

e Test data: new Re Nr.s |
e Source MAE: 0.146 .
rd ~
. . - -
SOLs> MAE: 0.013 v Y 1) (

e More than 10x reduction

Um et. al: Solver-in-the-Loop, Learning from Differentiable Physics to Interact with PDE-Solvers



Looking into the Future T|_|T|

Learning via a Large Number of Simulation Steps

Evaluation:

« MAE Improvement over Src
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Generalization T|_|T|

Improved generalization due to varied, gradient-based training feedback

o Better performance for
previously unseen inputs

e Flexible due to combination
with source solver

Um et. al: Solver-in-the-Loop, Learning from Differentiable Physics to Interact with PDE-Solvers



Long-term Stability

Unsteady Wake Flow (250 time steps)
3D Test Case, Re=468.8

NON SOL 16
MAE=0.144 MAE=0.130



3D Results

Unsteady Wake Flow in 3D, Re=546.9

Source SOL 16
Reference

Um et. al: Solver-in-the-Loop, Learning from Differentiable Physics to Interact with PDE-Solvers



Differentiable Physics

Wide Range of Applications

* Error reduction for (generic) PDEs
* Control problems

* Plasma simulations

 Model completion (reacting flows)

e Turbulence



Turbulence: Spatial Mixing Layer

DNS

o Semi-implicit PISO solver
(2nd order in time)

o Shear layer with vorticity
thickness Re = 500

e Evaluate on test set of
unseen perturbation modes
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X
List et. al: Learned Turbulence Modelling with Differentiable Fluid Solvers
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Turbulence: Spatial Mixing Layer

Learned Simulator only:

Vorticity w OAt
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List et. al: Learned Turbulence Modelling with Differentiable Fluid Solvers




E(k)

TUTI

Turbulence: Spatial Mixing Layer

Closely matches DNS turbulence statistics (steady state over 2500 steps)
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List et. al: Learned Turbulence Modelling with Differentiable Fluid Solvers



Training via Differentiable Physics

Numerous Advantages:

e (Generalization
 Runtime performance

* |mproved accuracy






Improved Learning Updates

Motivation

So far taken for granted: deep learning paradigm of optimizing via 0./ ds’

Has fundamental problems in physical settings

. | | 0P" oL "
- Units are wrong: deep learning gradient for s was: —
0s 0L
| | 0’L\-1 oL"
- Update should have units of s, as in Newton’s method: —# (ﬁ> ﬁ_
S S

= Scaling problems & unstable training

Holl et. al: Scale-invariant / Physical Gradients for Deep Learning



Improved Learning Updates TI.ITI

Inversion is Crucial L(Sput)

1.0

o dLT |
Steepest direction via— not optimal

0s

Example: steep dimension severely limits steps

oL '\ -1
)

Inversion accounts for rescaling, e.g. (

Either numerical or analytical inversion

0.0 0.2 0.4 0.6 0.8 1.0
Holl et. al: Scale-invariant / Physical Gradients for Deep Learning



Physical Gradients TI.ITI

Leverage Inverse Solver for Update Step

Employ (custom) inverse solver &7~

Compute NN update step via proxy-L2 loss

I

AD s ( P ))
= —n— (s— S

Update step integrates gradient w.r.t. outputs s .

Holl et. al: Scale-invariant / Physical Gradients for Deep Learning



Scale-Inverse Physics Gradients T|_|T|

NN Solving Inverse Problem with Heat Diffusion

Observation Reconstruct
Only difference: training method (Adam or Adam + PG) Input

Holl et. al: Scale-invariant / Physical Gradients for Deep Learning



Scale-Inverse Physics Gradients T”Tl

NN Solvmg Inverse Problem with Heat Diffusion

XAdam XA + BFGS XA + PG

ldentlcal NNsv

Holl et. al: Scale-invariant / Physical Gradients for Deep Learning



Half-inverse Gradients

Joint Inversion of Physics and Network

Partially invert Jacobian from NN and simulator jointly

0P\ —1/2
Resulting update step A0 = — ;7<—) (

oL )T
00

0S
Over all samples of a mini-batch

Update represents optimal & scale respecting first-order step

Schnell et. al: Half-Inverse Gradients for Physical Learning



Half-inverse Gradients T|_|T|

Non-linear Oscillator

Classical problem setup with non-linear force term 10 — Adam SGD
: — GN Adagrad
§ — HIG Adadelta
Backprop through 96 time integration steps (RK4) 10_2? —— RMSprop
3
V)
)
o
— 10—4
10-°

0 1500 3000
Wall clock time

X 1
Schnell e al: Half-Inverse Gradients for Physical Learning



Improved Gradients - Summary TuTl

Fundamentally improved learning directions
Yields neural network states that are unreachable with simpler methods

— |llustrates potential gains from going beyond 1st-order gradients







Summary Tumn

Differentiable Simulations and Inversion
as Tools to bridge Physics & Learning (&

ystem 1 / System 1/ System 1/ System 1/ System 1/ Syster
Component NN Component NN Component NN Component NN Component NN Com

ystem 2 / System 2 / < System 2 / System 2 / L System 2 /
) Simulation ) ) )

imulation Simulation Simulation Simulation

Improved Updates  Turbulence Modeling Error Correction
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* Intro to physical simulations & deep learning
 Comprehensive overview
 Hands-on code examples, run on the spot

 Among others: supervised learning, tightly coupled
differentiable simulations, reinforcement learning and
uncertainty modeling...
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fig, axes = pylab.subplots(1, 6, figsize=(16, 5))

for i in range(@,6):
v = steps_hybrid[ixintervall [1].values.vector[c].numpy('batch,
axes[il.imshow( v , origin='lower', cmap='magma')
axes[i].set_title(f" Hybrid solver t={ixinterval} ")

nvlah.tiaht lavout()

il

They both start out with the same initial state at \(t=0\) (the downsampled
solution from the reference solution manifold), and at \(t=20\) the solutions
still share similarities. Over time, the source version strongly diffuses the

Vbt st [ yneid cherta12n

ybrd oo s

o B W ¥ & 8 @

structures in the flow and looses momentum. The flow behind the obstacles
becomes straight, and lacks clear vortices.

The version produced by the hybrid solver does much better. It preserves the
vortex shedding even after more than one hundred updates. Note that both
outputs were produced by the same underlying solver. The second version
just profits from the learned corrector which manages to revert the numerical
errors of the source solver, including its overly strong dissipation.

Physics-based Deep Learning - the Book T|_|T|
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Thanks for Listening!

https: //physmsbaseddeeplearnmg org
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