

# **CRAB cavity tuning system update**

Pierre Minginette, Kurt Artoos

Thanks to WP4 team



20/10/2021 HL-LHC Collaboration meeting

### Outline

- Reminder functioning tuner
- Lessons and upgrade from SPS DQW tuner
- Status SPS RFD parts
- Status LHC DQW



# **Reminder functioning tuner**





# **Tuning principle**

#### FINE TUNING PRINCIPLE

Symmetric actuation through tuner frame and concentric tubes. Actuator outside cryostat and floating



# Reminder end of Run1 DQW SPS 2018

- Sudden increase of stiffness 2-3 October after thermal cycle
- no real blockage
- One motor-gear coupling started slipping 19/10
- Tuner heaters broken + wires damaged
- Possible ice formation

#### Important observations:

- Very hard to dismount motor in-situ or to replace the heater
- Impossible to retighten the coupling without full actuator disassembly
- No access to set limit switches and hard stop
- Potentiometer not needed















# **SPS DQW and RFD Upgrade**

- D-type slip-free Oldham coupling with set screw
- Introduction connection clamp
- Creation more space
- Lowered actuator height









- Removed potentiometers
- Moved limit switches to front
- Only 1 hard stop in front

#### **Testing**



#### Heater and temperature gauge

- SPS DQW tuner heaters broke due to water inside heater
- Cables were found damaged
- Waterproof equivalent same provider is too long













- Increased available space
- Possibility to inject protection grease or resin
- Exit wires better
- Temperature gauge on screw
- Replaceable unit

#### **SPS RFD Status: actuators**





# **RFD Status: Double tuner tube bellows**

- Rearrangements following DQW assembly experience
- No more intermediate flanges
- Easier coupling
- Higher clearance









Assembly of the parts in preparation

### **RFD Status: Top and bottom coupling**





#### **Tuner frame and guidance**







#### **LHC DQW Status**



- Shared components
- Planning: Learning from SPS RFD assembly
- Work on radiation hardness, reliability and fatigue testing + optimisation



### Conclusions

- SPS DQW tuner upgraded
- Well advanced for SPS RFD tuners
- Next step is the preparation for series LHC Crab tuners





#### Thank you for your attention!



# **Tuning principle**

DQW: RFD: 1. pre-tuning at warm 1. -2. fine tuning at cold 2. fine tuning at cold **PRE-TUNING PRINCIPLE** 



Pre-tuning sensitivity: 1046 kHz/mm\* Elastic Pre-tuning range: ± 400 kHz Non-elastic range: ± 1 MHz Silvia Verdu Andres

