

WP4-RFD cryomodule design for SPS tests

11th HL-LHC Collaboration Meeting, CERN - 19-22 October 2021

Teddy Capelli on behalf of the WP4 collaboration in particular : STFC Daresbury, Triumf, CERN EN/MME, ATS/DO, SY/RF, EN/ACE, EN/SMM, HSE, TE/CRG, TE/VSC.

Cryomodule design

- Collaboration CERN / STFC-Lancaster (UK) / Triumf (Canada)
- Environmental constraints :
 - Space integration LHC/SPS/SM18
 - Cryogenic temperatures / Cryogenic capacities
 - Vacuum / Ultra High Vacuum
 - Radiofrequencies
 - Vibration due to transport
 - External interfaces
- Assembly constraints :
 - Assembly sequence
 - External sites for assembly STFC / UK Triumf / Canada
 - Interfaces for assembly tooling
 - Clean room compatibility
 - Welding compatibility
- Series production optimization:
 - Optimization of thermal performances
 - Production simplification / sub-contracting
 - Standardization of component
 - Material selection for cost reduction
 - Weight reduction

LHC integration – preliminary study

RFD/SPS Cryomodule overview

RFD Cavity mechanical design

CAVITY design

- Mechanical design done from 2K RF design
- Splitting of the cavity optimized for manufacturing

(Anticipation of deformation, thickness variation and welding shrinkage)

Cold magnetic shield (2K) - STFC:

- Material : Cryophy
- Installed around the cavity inside the Helium vessel
- Analysis for cool down stress and deformation

FPC, HOMS and Pick up

See presentation of E.Montesinos

CERN responsible for HOMS, FPC & Pick-Up -E.Montesinos SY/RF

HOMs and Antenna for RFD :

 Collaboration SY/RF – CERN workshop (EN-MME)

FPC outer pipe :

- Stainless Steel pipe with internal Cu coating
- Collaboration EN/MME SY/RF TE/VSC
- Thermal evaluation see EDMS 2218580

Beam section of RFD Cryomodule

See presentation of Chiara Pasquino CERN/TE-VSC and EDMS 1864637 – TE/VSC specification

Beam screen

- Stainless steel screen with «random» holes for pumping
- Copper layer on the inner surface (th. 0.075mm)
- 1 bellows for differential contraction
- Aperture analysis -> 1.5mm clearance on the radius (calculation made with worse case LHC dipole method see EDMS 1864637)
- Cold bore <3K (for cryo pumping) (HL-LHC design report V.01 §12.6)

Cryogenic feedthrough

Beam screen tube

Mobile flange connection

V. Baglin, HL-LHC Vacuum System, WP2 meeting, CERN, 27th June 2017

Contact ring (gold coated)

Cooling tube

Mobile flange

Bellows with internal shield (PIMS)

- Need to "screen" every bellows on the beam lines
- Large lateral displacement (6 mm max.) for cavity positioning & thermal contraction
- Design from triplet area (C.Garion J.Perez Espinos CERN TE/VSC)
- 4 configurations specific for CRAB cryomodule designed

10

Bellows with internal shield (PIMS)

Copper Beryllium deformable RF fingers:

- Circular aperture
- C17410
- 0.1 mm thick, 3 mm width, gap: 1.4 mm
- 3 convolutions
- Thermal conductivity at low temperature checked

Result of low temp. conductivity measurement By Torsten Koettig – TE/CRG

Beam vacuum instrumentation

Support and alignement for RFD

Cavity support

- Design adapted from first cryomodule
- Modification with respect to lesson learnt

Alignement tolerances

- X-Y: 0.5mm (3σ) for mechanical alignment + 0.5mm for operation errors
- Rz < 0.3°
- Rx, Ry (mean axis of CC inside Φ0.5mm)

Mechanical and thermal evaluation Report not yet on EDMS – E. Cano-Pleite

Cavities position monitoring system

See presentation of V.Rude / M.Sosin

- Frequency Scanning Interferometry system (tested and validated during SPS test)
- 8 targets per cavity
- Measure distances between FSI heads and centres of CCR targets used
- Positions of the FSI heads to be measured
- Anticipation of deformation (Thermal contraction, vacuum forces..etc)

Courtesy M.Sosin – CERN EN/SMM

14

Adaptation of DQW design to RFD cavity

Modification following lessons learned with DQW See presentation of K.Artoos on freq. tuning

RF COAXIAL LINES

CERN responsible for HOMS, FPC & Pick-Up - E.Montesinos BE/RF

- Insulation vacuum (not cooled by convection)
- RF power
- Thermal load to 2K bath
- Alignment and thermal contraction compensation
- Limited room for installation inside the cryomodule
- 2 V-HOMS coaxial lines / cryomodule
- 2 H-HOMS coaxial lines / cryomodule
- 2 Antennas coaxial lines / cryomodule
- Size and design standardized for all lines
 - Non magnetic S.Steel with copper coating
 - Standardized extremities
 - Shapal ring for thermalisation of inner line
 - Alumina for vacuum feedthrough
- Thermal evaluation see : EDMS 2592079 & 2367094
 - J. Swieszek EN-MME

Teddy Capelli CERN/EN-MME

See presentation of E.Montesinos

Cryogenic lines

- 4 circuits of Helium :
 - 4-20K cooling line
 - 4.5K filling line
 - 2K supply / return
 - 40-60K thermal screen cooling line
- Safety valve and rupture disk on cryomodule side
- Exchangeability of level gauges
- Pressure measurement set up
- Distribution of pipes for cooling equilibrium
- Adaptability to LHC slope

Cryogenic Internal lines

Cryogenic safety valve extension

See presentation of K.Brodzinski

Datas :

- surface 2k / beam vacuum : ~1m2
- surface 2k / insulation vacuum : 3.6m2
- Volume of helium : 166L
- Biphase inner diameter : 100mm

Exchangeable Level gauge

Cryogenic instrumentation

TT801

TT814

T825

TT819b

TT802

TT803

TT804

П822

- Lots of thermal measurment during SPS test for validation of design/calculations :
 - 28 CERNOX
 - 24 PT100
 - 2 pressure transmiters
 - 2 Helium level gauges
 - 42 heaters

HL-LHC CRAB CAVITY P&I DIAGRAM – CRNLSQLJ0070 Courtesy L. Delprat TE-CRG

TT805

TT807

TT808

TT815

Cryogenic Jumper

- Integration of new cryoline layout
- Standardization of LHC interface
- Symmetrical jumper interface (allows the rotation of cryomodule)

Q0 300K support :

Q1 70K intercept :

Q2 2K return :

Q3 2K supply

Thermal screen (STFC/CERN)

Design changes:

- Aluminium plates th. 3mm*
- Stainless steel Cooling circuit 316L (1.4435)
- Adjustable support

*AI 6061-T6 panels give significant cost and weight savings for series production

Pipe Panel Connections (STFC/CERN)

- Ss 316 Pipes pre-assembled with Al. block (6061-T6)
- Pipes are pre-loaded with clamp
- Al block welded in sequence
- Pipe-block is integrated into cooling circuit
- Al blocks are fastened to panel

LHCACFTS0192

Mechanical analysis See EDMS 2569527 - T. GUILLEN HERNANDEZ EN-MME

Load case	Preload/Force [N]	Displacement [mm]	Pressure inside pipe [MPa]	Temperature [K]
LC 1	-1625	Uz = 0	-	-
LC 2	-1625	Uz = 0	-	-
LC 3	-	Uz = 0	-	-
LC 4	-	Uz = 0	2.5	-
LC 5	-	Uz = 0	2.5	Yes
LC 6	-	Uz = 0	-	Yes

21

Warm Magnetic Shield (STFC)

Courtesy N.Templeton - STFC

DQW design adapted to RFD Material: MuMetal Th.: 2mm Curie temperature (460 °C) to be considered in design & implementation of OVC welding ~150 kg 2mm MuMetal Top Joint EM Gasket Top Assembly **FPC** Cover Tapped OVC Spacers Window Joint Spring Fingers Windows Sliding Joints for OVC Tolerance Lower Assembly

Teddy Capelli CERN/EN-MME

22

Cryostat vessel design

Mechanical analysis

- Large gaskets avoided
- Overall dimensions : 2800x950x1300
- Mass : 3100kg
- St. Steel welded assembly

RFD OVC manufacturing - Courtesy J.Sauza Bedolla - Lancaster

Manufacturing is over and leak test has been done and validated

Assembly sequence overview EDMS 2475738

Detailled assembly procedure under definition - STFC/CERN collaboration

27

Design from DQW, length/position adapted to RFD

HILUMI

Teddy Capelli CERN/EN-MME

HL-LHC Collaboration meeting 20-10-2021

Results: tests 1 and 2

• Test 2: 2 cycles between +/- 5 mm at 1 mm/min

• |F|_{max}= 47.7 N downward direction

HILUM

L. BIANCHI - EDMS1737834

Test performed at Mechanical Measurment lab of CERN (L.Bianchi - M.Guinchard)

Internationnal review of the Crab Cavity performance for HiLumi - CERN - 3 april 2017

Cryogenic instrumentation (not complete, for illustration)

Many of this equipments are already at CERN

Internationnal review of the Crab Cavity performance for HiLumi – CERN – 3 april 2017

