Requirements for beam halo population measurements

P. Hermes, S. Redaelli, D. Mirarchi, R. Bruce On behalf of WP5

Acknowledgments to:

E. Bravin, G. Sousa, G. Trad

11th HL-LHC Collaboration Meeting 20.10.2021

Introduction

- Stored beam energy in HL-LHC approximately 700 MJ per beam
- LHC measurements: significant fraction (~5%) stored in beam halo
- Scaling by total intensity LHC to HL-LHC

 → beam halo carries ~ 35 MJ
- Fast failure scenarios can cause **very** sudden orbit shifts
- Induced high beam loss: affect operational efficiency, **potential collimator damage**!
- Solution: Hollow Electron Lens (HEL) to remove particles from beam halo

Introduction

LHC Collimation System

Introduction

HL-LHC Collimation System with Hollow Electron Lens

HEL depletes the beam halo.

Concept of hollow electron lenses

Halo measurements in HEL operation

- · Beam halo population measurements needed to
 - Commission and evaluate performance of HEL
 - Ensure that operational safety/efficiency not jeopardized by too high halo population \rightarrow interlock
- Imperative requirement: non-destructive measurement
- <u>Versatile</u> enough to cover all relevant configurations

Halo measurement options

- Destructive and difficult to calibrate
- Not suited for monitoring during operation

Coronograph

Figure 4: 3D drawing of the LHC halo monitor.

Courtesy of A. Goldblatt *et al.*, MOPG74, Proceedings of IBIC2016

- Based on synchrotron light
- Non-destructive
- Continuous monitoring
- Challenge: diffraction. See next presentation by E. Bravin

Possible operational configurations

Tail clearance	TCP half gap (σ _{ref})	ε _n (μm rad)	Radial range in real beam size	Radial range** to measure (mm)
Max. possible	6.7	2.5	3.6* to 6.7	0.9 – 1.7 (x) 1.3 – 2.3 (y)
Min. required			4.7 to 6.7	1.2 – 1.7 (x) 1.6 – 2.3 (y)
Max. possible	8.5		4.25 to 8.5	1.1 – 2.2 (x) 1.5 – 3.0 (y)
Min. required			6.5 to 8.5	1.7 – 2.2 (x) 2.3 – 3.0 (y)

 $\sigma_{_{ref}}$ corresponds to the RMS beam size with 2.5 μm rad normalized emittance

*) corresponds to the min. achievable inner e-beam radius of 1.1 mm

**) beam size at 7TeV at BSRTR.5R4.B1

- Further scenarios for MDs and machine studies may be of interest as well
- Measurements at injection are also considered
- Flexibility needed also for smaller emittances
- What range can be reached?

Desired interlock approach

- Failure scenarios cause shifts of the beam orbit in either of the transverse planes
- Integrated halo population in each plane u=x,y must not exceed a certain threshold T

$$\mathcal{T} > \int_{u_{\mathrm{TCP}}-2\,\sigma}^{u_{\mathrm{TCP}}} |\rho(u)| \,\mathrm{d}u$$

where $\rho(u)$ is the particle density

Desired interlock

Possible approach:

- Interlock on cumulative stored beam energy within *n*σ from either of the two TCPs (horizontal / vertical)
- Must be able to integrate over the energy stored above a given transverse amplitude

Conclusions

- Non-destructive halo monitoring: crucial for safe operation of HL-LHC collimation system
- Flexibility in operation needed: measure with different TCP and HEL settings
- Possible interlocks based on measured stored beam energy between TCP and $n\sigma$
- For studies aim to have a 2D image that can be integrated

home.cern