

Collimation updates for v1.5

B. Lindström

Thanks to A. Abramov, R. Bruce, R. De Maria, J. Molson, P. Hermes, S. Redaelli, F. van der Veken

20th October 2021 – 11th HL-LHC Collaboration Meeting

Introduction

Previous HLLHC beam loss studies are ~three years old

- Significant changes in optics and layout since then (v1.3 to v1.5)
- Operational scenario for RunIV has changed from the baseline
 - "Run IV operational scenario" document under preparation by WP2*
- Relaxed collimator settings requested for beam stability
- → Collimation studies need update:
 - Global cleaning efficiency
 - IR7 dispersion suppressor losses
 - Loss spikes/clusters in other cold sections
 - TCT shower simulations (experiment backgrounds)
 - Asynchronous beam dumps
 - Beta beating and orbit errors

Layout Changes

- v1.5 (latest) introduces several differences from v1.3:
 - Optics
 - IR1/IR5 element positions up to half-cell 4
 - TCL.5R{1,5} and TCT.6L{1,5} positions
 - DFXJ, D2 lengths
 - 2x Crab cavities per beam/IP/side removed
 - D2 aperture
 - 11T dipole moved from cell 8 to 9
 - 1 MQWA in IR7 removed, pos of remaining changed
 - ...
- Aperture improved using layout database*
- IR7 TCLD likely not available for RunIV
 - → strong impact on cleaning efficiency

Aperture model

Sources:

- MAD-X files on AFS
- Inherited file with VSS/BPM markers
- Layout database

Updates to do:

- LayoutDB requires some patches: inconsistent positions, aperture definitions, extensive yet incomplete
- LHCb VELO+SMOG not available

Collimator Settings $(\epsilon_n = 2.5 \mu m \cdot rad)$

		Run V	Run IV	
	TDR Baseline (tight settings)		ngs	
	15 cm β*	15 cm β*	20 cm β*	100 cm β*
TCP IR7	6.7	8.5	8.5	8.5
TCS IR7	9.1	10.1	10.1	10.1
TCLA IR7	12.7	14.0	13.7	13.7
TCLD IR7	16.6	n/a**	n/a**	n/a**
TCP IR3	17.7	17.7	17.7	17.7
TCS IR3	21.3	21.3	21.3	21.3
TCLA IR3	23.7	23.7	23.7	23.7
TCS IR6	10.1	11.1	11.1	11.1
TCDQ IR6	10.1	11.1	11.1	11.1
TCL IR1/5	14.2	14.2*	16.4*	38 – 44*
TCT IR1/5	10.4	11.4*	13.2*	23 – 35*
Prot. Aperture IR1/5	11.8	12.8	14.6	>24.4
TCT IR2	43.8	43.8	43.8	43.8
TCT IR8	17.7	17.7	17.7	17.7
TDIS	park	park	park	park
TCLD IR2	park	park	park	park

^{*} gap in mm is set to final (15 cm) value and kept constant throughout squeeze

^{**} likely n/a for runIV, status for runV to be confirmed

Optics version comparison – v1.3 vs v1.5

TDR baseline with tight collimator settings

- 15 cm β*
- Impact: 4 µm
- 6.4e6 particles / 200 turns

General notes:

 Collimator loss distributions mostly consistent, except for some TCT losses

TDR baseline with tight collimator settings

- 6.4e6 particles / 200 turns
- Collimator loss distributions mostly consistent, except for some TCT losses
- b1: ~15 % more DS losses in v1.5
- b2: ~5 % more DS losses in v1.5

TCP beta functions

- Worsening of DS losses likely due to smaller TCP beta functions in v1.5 optics
- Matching the TCP beta functions in v1.3 to v1.5 reproduces worsened cleaning in both beams
- Restoring the v1.3 beta functions in v1.5 is feasible

Simulation method comparison – K2 vs FLUKA

K2 vs FLUKA

K2 is a built-in scattering module in SixTrack

FLUKA is an extensive tool for simulating particle-matter interactions – can be coupled to SixTrack for collimator interactions

- 20 cm β*
- Impact: 4 μm
- 6.4e6 particles / 200 turns

- Collimator loss distributions mostly consistent
- Increase in TCT4 losses
- Leakage from TCP is larger

Collimator settings comparisonTight Settings vs Relaxed Settings

Tight vs Relaxed collimator settings

- FLUKA
- 15 cm β*
- Impact: 4 μm
- 10e6 particles / 200 turns
- ~10 % worse global inefficiency with relaxed settings
- ~7 % larger DS losses with relaxed settings

15000

s (m)

20000

25000

10⁻⁵

 10^{-6}

10

5000

10000

Tight vs Relaxed collimator settings

- FLUKA
- 15 cm β*
- Impact: 4 μm
- 10e6 particles / 200 turns
- ~10 % worse global inefficiency with relaxed settings
- ~7 % larger DS losses with relaxed settings
- B4V TCT losses in IR1 reach1.2e-3
 - Could affect background in IP1

Normalized cut on scattering angle

- Minimum angle that a particle can be scattered and be absorbed by a downstream collimator depends on phase advance and collimator settings
- TCP to IR1 TCT phase advance almost optimal with new collimator settings
- Not a concern at 20 cm (run IV)

Normalized cut on scattering angle

- Minimum angle that a particle can be scattered and be absorbed by a downstream collimator depends on phase advance and collimator settings
- TCP to IR1 TCT phase advance almost optimal with new collimator settings
- Not a concern at 20 cm (run IV)

Solutions if relaxed settings to be used at 15 cm?

- Adjust phase advance?
- Retract TCTV in IR1 by 0.5 sigma (reduces margin in 15 cm optics)
- Insert TCP.D by 0.5 sigma (increases impedance)
- Insert TCS by 0.4 sigma (increases impedance)

20 cm β* with Relaxed Settings

Relaxed collimator settings

- v1.5 optics
- Impact: 5 μm
- 10e6 particles / 200 turns

- 20 cm results similar to 15 cm, except TCT losses
- 64 cm results similar to 20 cm, except TCT losses and inefficiency (~6 % worse)

Relaxed collimator settings

- v1.5 optics
- Impact: 5 µm
- 10e6 particles / 200 turns

General notes:

- 20 cm results similar to 15 cm, except TCT losses
- 64 cm results similar to 20 cm, except TCT losses and inefficiency (~6 % worse)

TCT losses worst in IR1, for B1H

 Touch maps have been sent to FLUKA team for experiment background simulations

Summary

- Simulation model has been updated to v1.5 optics with a more detailed aperture
 - Aperture requires some patching
 - → discussion ongoing with layout team
 - 15 % larger DS losses in v1.5 optics
 - → due to smaller TCP beta functions, can be corrected
- Relaxed collimator settings have been requested
 - 7 % larger DS losses
 - Higher TCT losses, in particular IP1 for B4 vertical
 - → potential **solutions**: retracting TCT by 0.5 sigma, inserting TCP / TCSG by 0.5 / 0.4 sigma
 - TCT losses not expected to be an issue at 20 cm
 - Input for TCT shower simulations has been sent to FLUKA team
- v1.5 optics, relaxed settings vs v1.3 tight, up to ~23 % increase in the DS losses (B1H)
 - B1H DS losses similar to B2H losses in v1.5
 - To be cross-checked with FLUKA simulations of power deposition in IR7 DS before new collimator settings are validated

Follow ups:

- consider using much larger beta functions at TCP for increased cleaning efficiency
 - see presentation by R. Bruce, "Studies of IR7 optics": https://indico.cern.ch/event/828666
- consider optics errors, failures

Scenario	inefficien cy [e-4]	MaxCold [e-5]	MaxWarm [e-5]	DS cl1 [e-6]	DS cl2 [e-6]	MaxTCT [e-4]	
B1 v1.3 tight H/V	7.4 / 6.6	6.1 / 5.2	1.1 / 0.8	8.0 / 6.5	5.6 / 5.2	2.3 / 1.0	
B1 v1.3 relaxed H/V	8.1 / 7.2	6.1 / 6.3	0.6 / 0.6	8.8 / 6.9	6.0 / 5.5	3.3 / 1.0	
B2 v1.3 tight H/V	8.6 / 5.9	4.6 / 2.5	0.5 / 0.6	9.4 / 6.1	5.8 / 4.4	0.4 / 3.7	
B2 v1.3 relaxed H/V	9.5 / 6.5	5.4 / 3.2	0.6 / 1.6	10. / 6.7	6.2 / 4.7	0.6 / 13	
B1 v1.5 tight H/V	8.6 / 7.1	6.9 / 5.2	5.0 / 4.5	9.2 / 6.7	6.8 / 6.0	2.3 / 0.6	
B1 v1.5 relaxed H/V	9.3 / 7.7	6.9 / 6.7	9.0 / 6.6	9.9 / 7.2	7.2 / 6.4	4.0 / 0.8	
B2 v1.5 tight H/V	8.8 / 6.8	4.9 / 3.3	6.7 / 5.0	9.2 / 6.5	6.4 / 5.1	0.4 / 3.2	
B2 v1.5 relaxed H/V	9.9 / 7.2	5.6 / 3.2	7.3 / 7.0	10. / 6.8	7.0 / 5.5	0.6 / 12	
TCP inserted V	8.1	3.8	5.9	7.4	6.5	8.0	
TCSG inserted V	6.2	1.9	5.1	5.5	4.9	8.1	
TCT relaxed V	7.3	3.8	6.0	6.7	5.7	4.8	
B1 v1.5 relaxed TCLD	2.1 / 1.3	13. / 5.8	7.2 / 4.5	3.9 / 2.3	0.03/0.03	3.4 / 0.9	
B2 v1.5 relaxed TCLD	2.0 / 1.3	14. / 8.9	6.9 / 7.6	3.4 / 2.0	0.02/0.02	0.6 / 12	
FLUKA B1 v1.5 tight*	/ 2.8	/ 3.5	/657	/ 2.8	/ 2.3	/ 0.7	
FLUKA B1 v1.5 relaxed*	/ 3.1	/ 3.4	/699	/ 3.0	/ 2.4	/ 1.0	
FLUKA B2 v1.5 tight	/ 2.4	/ 3.7	/499	/ 2.5	/ 2.1	/ 3.3	
FLUKA B2 v1.5 relaxed	/ 2.8	/ 5.6	/572	/ 2.3	/ 2.3	/ 13	
* 1.5 µm impact parameter, the rest are 4 µm					21		

Increase of IR7 DS losses

- Larger dispersion in IR7 DS could explain increase
 - further validations ongoing
- Beta functions also different

IR7 beta functions

Normalized cut on scattering angle

v1.5 optics – relaxed settings at 20 cm and 64 cm

Relaxed collimator settings

- v1.5 optics
- Impact: 4 μm
- 6.4e6 particles / 200 turns

- 20 cm results similar to 15 cm, except TCT losses
- 64 cm results similar to 20 cm, except TCT losses and inefficiency (~6 % worse)

relaxed collimator settings

- v1.5 optics
- Impact: 4 μm
- 6.4e6 particles / 200 turns

- 20 cm results similar to 15 cm, except for TCT losses
- 64 cm results similar to 20 cm, except TCT losses and global inefficiency (~5 % worse)

relaxed collimator settings

- v1.5 optics
- Impact: 4 μm
- 6.4e6 particles / 200 turns

- 20 cm results similar to 15 cm, except for TCT losses
- 64 cm results similar to 20 cm, except TCT losses and global inefficiency (~5 % worse)

relaxed collimator settings

- v1.5 optics
- Impact: 4 μm
- 6.4e6 particles / 200 turns

- 20 cm results similar to 15 cm, except for TCT losses
- 64 cm results similar to 20 cm, except TCT losses and global inefficiency (~5 % worse)

TCLD in IR7 dispersion suppressor

- Plan to exchange 1x main dipole with 2x 11T dipoles
- Provides space for the TCLD
- Installation postponed, unlikely to occur before RunIV

→ must consider configurations without TCLD

B4V large TCT losses – mitigations

B4V – large TCT losses

- Losses at 1.3e-3 in the TCTs could risk cause beam dumps, should be rectified
 - n.b. in 20 cm optics, TCTs are at 13.2 sigma and losses are insignificant
- Mostly elastically scattered protons in TCP, betatron oscillations

- Superficial hits on TCT
- 90 % particles within impact param 0.5 sigma

TCSG.B5L7.B2

B4V – tracks

TCSG.A4L7.B2

Solutions?

- Retract TCT1 by 0.5 sigma (reduces margin in 15 cm optics)
- Insert TCP.D by 0.5 sigma (increases impedance)
- Insert TCS by 0.4 sigma (increases impedance)

TCT relaxed 0.5 sigma

TCT relaxed to 13.2 sigma (corresponds to 20 cm optics)

TCP inserted 0.5 sigma

TCS inserted 0.4 sigma

v1.3 vs v1.5 comparison using tight collimator settings

10-7

5000

10000

15000

s (m)

20000

25000

Comparison using old collimator settings

- Nominal optics (15 cm β*)
- Impact: 4 μm
- 6.4e6 particles / 200 turns

- Collimator loss distributions consistent, except for some TCT losses
- b1: up to 15 % worse global inefficiency in v1.5
- b1: up to 15 % larger DS losses in v1.5
- Max warm losses much larger in v1.5, b1&b2

- Nominal optics (15 cm β*)
- Impact: 4 μm
- 6.4e6 particles / 200 turns

- Collimator loss distributions consistent
- b1: up to 15 % worse global inefficiency in v1.5
- b1: up to 15 % larger DS losses in v1.5
- Max warm losses much larger in v1.5, b1&b2
 - → comes from change in single turn dispersive orbit

- Nominal optics (15 cm β*)
- Impact: 4 μm
- 6.4e6 particles / 200 turns

- Collimator loss distributions consistent
- b1: up to 15 % worse global inefficiency in v1.5
- b1: up to 15 % larger DS losses in v1.5
- Max warm losses much larger in v1.5, b1&b2

v1.3 vs v1.5 comparison using relaxed collimator settings

- Nominal optics (15 cm β*)
- Impact: 4 μm
- 6.4e6 particles / 200 turns

- Collimator loss distributions consistent
- b1: up to 15 % worse global inefficiency in v1.5
- b1: up to 15 % larger DS losses in v1.5
- Max warm losses much larger in v1.5, b1&b2

v1.5 – collimator comparison

B₁H

B1V

B4H

v1.5 – collimator comparison using FLUKA coupling

FLUKA coupling

FLUKA coupling

- Nominal optics (15 cm β*)
- Impact: 4 μm
- 6.4e6 particles / 200 turns

- Differences due to the different collimator settings are similar to the k2 simulations
- Compared to k2 simulations, the DS losses and inefficiency are factor ~3 smaller
- Worsening due to relaxed settings is similar
- Warm losses are larger by two orders of magnitude