

Implications of Matching Section and Dispersion Suppressor losses for proton and ion operation

Marta Sabaté-Gilarte, Francesco Cerutti

WP10

Energy deposition & R2E

11th HL-LHC Collaboration Meeting

on-line

OUTLINE

Continuation of the work presented in 9th HL-LHC Annual Meeting in 2019 https://indico.cern.ch/event/806637/contributions/3573645/attachments/1926897/3191739/2019_HL-Meeting_MGS_v2.pdf

- > Matching Section: collimation system.
 - > HL-LHC fixed masks.
 - > TID in cell 4 collimators.
- Dipole correctors in the Matching Section (MS) and the Dispersion Suppressor (DS).
- > Losses in the DS for HL-LHC: p-Pb run.

- p-p collisions at 7 TeV.
- HL-LHC optics v1.5 (May19).
- Half crossing angle: 250 μrad.

Matching section: collimation system

Layout of the matching section in IR1/5

- Collimators:
 - 3 TCLs.
 - 4 TCTs.
- Masks (TCLMs):
 - In front of Q4, Q5 and Q6 assemblies to further protect the magnets against collision debris.
- Jaw material choice based on the protection effectiveness to the downstream magnet.

*IR5-VC

M. Sabaté-Gilarte

https://indico.cern.ch/event/883397/contributions/3722234/attachments/1992016/3321794/202 0-02-21 ColUSM 124 TCLM.pdf

Cell 4: TCLM4

It is preferable not to replace the material jaw by copper.

Cell 5/6: TCLM5/TCLM6

The replacement of inermet by copper (in order to reduce the cost of the masks) is possible, since the differences between the two materials are within uncertainties when looking at the dose and power density in the Q5/6-assembly.

M. Sabaté-Gilarte

Total ionizing dose on cell-4 collimators and interconnecting elements

- FLUKA simulations were performed to extract the dose values in several positions of interest for the integrity of the grease used in the collimators and interconnect elements in cell-4.
- Worse case scenario for collimators in cell 4 under study: IR1 (HC).
 - The simulations presented here are performed for the right side of IR1.
 - The results also hold for IR1-left side due to the layout left/right symmetry.

Screws on the top motors of TCTPXH and TCLPX

Grease 1 mm layer around the screws

X> 0 \rightarrow External side of the ring

TID in the vacuum interconnect gear boxes

TID in the FRAS location

Grease 1 mm layer around the screws

M. Sabaté-Gilarte

Total ionizing dose on cell-4 collimators and interconnecting elements

- The maximum doses level at those locations for ultimate conditions, i.e., 4000 fb⁻¹ integrated luminosity, are:
 - 4 MGy in the grease around the screws of the top motors.
 - The dose distribution in the screws on the top motors is highly inhomogeneous.
 - 3 MGy inside interconnect gear boxes.
 - 1 MGy in the FRAS region.

Correctors in the Matching Section and the Dispersion Suppressor:

Dose estimates on MCBYs, MCBCs and MCBH/V

Dose estimates on MCBY correctors in cell 4

1.1 MGy

2.4 MGy

1.2 MGy

• Cumulated dose up to Run 3 (360* fb⁻¹): \leq 0.2 MGy.

• At the end of Run 4 (560* fb⁻¹ integrated luminosity):

Up

Up/Down

The polarity inversion in VC is of importance to keep the cumulated dose in the MCBY < 1.5 MGy.

* https://edms.cern.ch/document/2364638/1.2

Horizontal Crossing

Vertical Crossing

Dose estimates on MCBY correctors in cell 4

Cumulative dose (MGy)
5.9 / 7.8
6.4 / 8.6

- The dose limit of the MCBYs is expected to be between 1 and 5 MGy.
- Therefore, MCBYs cannot handle the radiation levels in the present Q4-assembly configuration for the whole HL-LHC lifetime.
- Measures should be envisaged from LS4 onward.

Dose estimates on MCBC and MCB correctors

D2

TAXN

Dose estimates on MCBC in the MS

 Worse case scenario: HC and IR1-right side, since the corrector of Q5/Q6 assemblies is facing the IP.

HC – IR1	Q5 assembly	Q6 assembly	Q7 assembly
Up to Run 3: 360 fb ⁻¹	≤0.2 MGy	≤0.2 MGy	≤0.2 MGy
During Run 4: 560 fb ⁻¹	0.7 MGy	0.6 MGy	< 0.01 MGy

(In case of VC in IR5, the maximum dose during Run 4 is 0.2 MGy)

- After LS4, the additional contribution of Run 5 and Run 6 together on the most exposed MCBCs will be:
 - Nominal operation, 2364 fb⁻¹: 3 MGy
 - Ultimate operation, 3245 fb⁻¹: 4 MGy \rightarrow approaching cumulatively 5 MGy
- The MCBC can be replaced by a shielded MCBY (see later).

Dose estimates on MCBC and MCB in the DS

Half cell	Corrector type	Cumulative up to LS4 (360+560) fb ⁻¹	peak dose (MGy) up to LS5 1844 / 2385 fb ⁻¹	up to LS6 3284 / 4165 fb -1
8	MCBC	1.6	3.2 / 4.1	5.6 / 7.1
9	МСВС	3.8	7.6 / 9.9	13.6 / 17.2
11	MCBV	1.8	3.6 / 4.7	6.4 / 8.1
13	MCBV	0.9	1.8 / 2.3	3.2 / 4.0

Worse case scenario is the left side of the IP since:

MCBCs and MCBs replacement by MCBYs + W-shielding

Possible solution for the MCBC correctors

		Integrated Iuminosity	Replacement in LS3	Replacement in LS4	Replacement in LS5	NO Replacement
Up	to LS3	360 fb ⁻¹	1.5	1.5	1.5	1.5
Up	to LS4	920 fb ⁻¹	0.6	3.8	3.8	3.8
Up	to LS5	1844 / 2385 fb ⁻¹	1.6 / 2.1	1.0 / 1.5	7.6 / 9.9	7.6 / 9.9
Up	to LS6	3284 / 4165 fb ⁻¹	3.1 / 4.0	2.5 / 3.4	1.5 / 1.9	13.6 / 17.2
	Color legend: cumulative dose on MCBC9 / on MCBY9+W Dose in MGy				Dose in MGy	

M. Sabaté-Gilarte

Dose estimates on MCBC and MCB correctors

Half cell in DS	Location in the machine	Number of Corrector Magnet	Time scale to reach 4 MGy	Time scale to reach 5 MGy
8	IR1 and IR5	2	by LS5	during Run 6
9	left side only	2	by LS4	during Run 5
11		2	during Run 5	by LS5

Table 1: Number of correctors in the LSS and DS receiving more than 5 MGy. The last twocolumns provide the operation period within which 4 or 5 MGy will be reached.

Half cell	Location in the machine	Number of Corrector Magnet
5 (LSS)	ID1 right side and IDE left side	2
6 (LSS)	TRI right side and TRS left side	2
8 (DS)	IR1 & IR5 right side	2
13 (DS)	IR1 & IR5 left side	2

Table 2: The number of correctors in the LSS and DS receiving between 4 and 5 MGy by theend of HL-LHC operation, i.e., LS6.

The MCBH/V corrector magnets in cell 11 and 13 are shorter than the MCBCs thus the solution of replacing them by a MCBY + inner inermet shielding has to be carefully explored.

Losses in the DS during p-Pb run

M. Sabaté-Gilarte

Baseline: TCL4, TCL5 and TCL6 are closed at 14σ

- HL-LHC optics v1.5 (May 2019):
 - IR1 right and left side.
 - β* = 0.5 m
- p (B1) Pb (B2) collisions:
 - +170 μ rad half crossing angle in the vertical plane.
 - Energy per beam 7.2 TeV $\rightarrow \sqrt{S_{NN}} = 8.8$ TeV.
- Collimators settings: assuming all TCLs open.
- Values normalized to 0.6 pb⁻¹ integrated luminosity, for 1 month of operation.
- Instantaneous luminosity: 10³⁰ cm⁻² s⁻¹.
- Inelastic nuclear interactions are the dominant process in p-Pb collisions (σ = 2.11 b).

The most abundant species among the losses is **tritons**, which are not indicated in the plot.

Peak power density profile in the inner coils ($L = 10^{30} \text{ cm}^{-2} \text{ s}^{-1}$)

> Closing the TCL6 will help cleaning the losses in half-cell 8 and 9.

- There is no threat for operation: peak power density below the quench limit for this L.
- The peak dose reaches 0.05 MGy in the MCBC9 coils and 0.15 MGy in the MCBC8 ones for an integrated luminosity of 0.6 pb⁻¹. The latter will be strongly reduced by closing the TCL6.

ROJECT

- Background studies.
- Possible forward physics detector implications.

Thank you for your attention

Important input from:

R. Bruce, R. De Maria, M. Ferrari, P. Fessia, R. Garcia Alia, L. Gentini, A. Lechner, G. Lerner, F-X Nuiry, S. Redaelli, D. Senajova

dose below the beam line (-70 cm) averaged over a volume of 20cmx20cmx20cm

