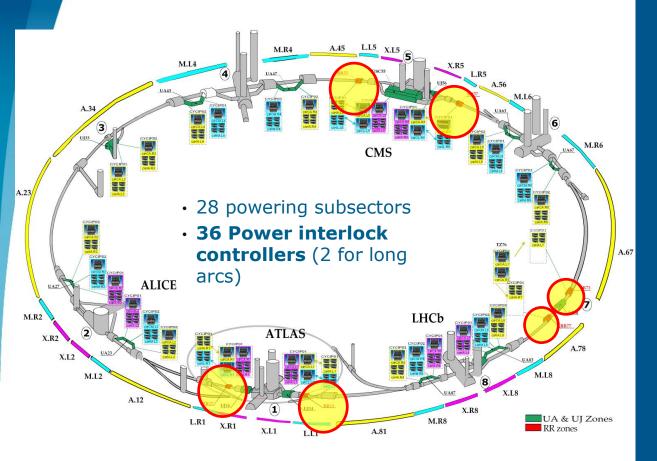


PICv2 and BISv2 for HL-LHC Design and Status

Jan Uythoven on behalf of A. Antoine, A. Apollonio, T. Cartier-Michaud, R. Johnson, O. Jullian Parra, M. Kalinowski, C. Martin, K. Osman, I. Romera Ramirez, R. Secondo



11th HL-LHC Collaboration Meeting, CERN, 19 – 22 October 2021

Introduction

- Power Interlock System v2 (PIC)
 - Protection of the superconducting magnet circuits
 - Affected by increased radiation levels due to HL
 - Status, plans
- Beam Interlock System v2 (BIS)
 - Backbone of the Machine Protection System of the LHC
 - Stop beam when needed
 - Status, plans
- Both projects are sponsored by the CONS program and by the HL-LHC project (WP7 Machine Protection & Availability)

PIC is designed to:

- Ensure the correct
 powering conditions for the
 superconducting magnet
 circuits
- Request a beam dump via the Beam Interlock System in case of failure of a connected circuit
- 10 out of 36 PICs are in a radioactive environment, namely the RRs at point 1, 5 and 7

PICv1 14 years of operation

- System installed in 2006 and in operation since 2007.
 - No interlocking failure recorded.
- Very high availability which is better than the prediction of <1 false dump / year
 - Operational observations:
 - 5 radiation-induced dumps: issue solved after relocating the 9 affected PLCs installed in UJ14, UJ16 and UJ56.
 - Beam dump triggered by BLM after losing the Power Permit 60 A due to a communication error, highlighting a wrong SW interlock logic implementation in WinCC OA.
 - 2 spurious Quench loop instabilities (not due to the PIC)
 - General:
 - 1 broken Anybus board (CIPAA)
 - 1 broken Siemens power supply
 - Few broken AC/DC TRACO modules (redundant, no operational stops)

PICv1 **Control Architecture**

CIPS (2x)
 Provides all voltage sources with redundancy for all components except the PLC which has its own redundant power supply.

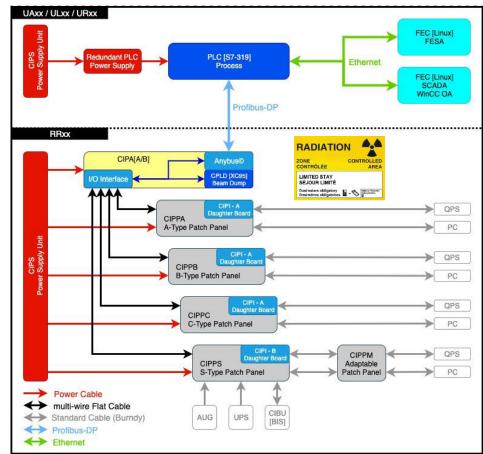
PLC

Process execution.

CIPA

Collects all the I/Os to expose them to the integrated CPLD and to the PLC via a PROFIBUS-DP fieldbus.

CIPPx


- Interface the PIC with all other systems (QPS, PC, AUG, UPS, BIS).
- To note: CRYO signal is based on a PLC-PLC communication.

CIPI

Provides the powering sources of some current loops, gathers the cables presence info and manages the connection to the BIC.

FECs

- GUI: SCADA (WinCC OA)
 Dedicated FESA class for the GPM function.

PICv2 Motivations

- Extend the lifespan of the PIC into the HL-LHC era by addressing the obsolescence of critical components in the system design.
- Make the system compatible with the increased radiation levels in the RR areas
 - Optimise the PIC based on the past experience, considering performance (reaction time) and diagnostics, and improve maintenance of the software

HL-LHC Specifications for PICv2

Relocation of the 12 PLC CPUs

of the sectors 1 and 5:

- from UL14, UL16 to UR15,
- from USC55, UL557 to UR55.
- New <u>configuration</u> of the PICs of the insertion regions and matching sections in point 1 & 5.
- Integration of new Trim Power Converters for the 11T Magnets.
 - <u>No request for additional</u> <u>functionalities</u>.

	Circuits for HiLumi	Magnet Type	Number of circuits per IP side	Total number of circuits	l_nominal (7 TeV) [kA]	I_ultimate [kA]	L per circuit at nominal current [mH]	R per circuit [mΩ]	Collaborations	References
	Triplet Q1, Q2a, Q2b, Q3	MQXFA / MQFXB	1	4 (IR1/5)	16.23	17.5	255.4	0.15	US-HiLumi	EDMS no. 2114564
	Trim Q1	-	1	4 (IR1/5)	2	2	69	1.35	-	
	Trim Q1a	-	1	4 (IR1/5)	0.035	0.035	34.5	227.08	-	
	Trim Q3	-	1	4 (IR1/5)	2	2	69	1.2	-	
	Orbit correctors Q1/2 - Horizontal/Inner	MCBXFB	2	8 (IR1/5)	1.58	1.69	58.4	2.38	Ciemat	
Triplet	Orbit correctors Q1/2 - Vertical/Outer	MCBXFB	2	8 (IR1/5)	1.43	1.53	124.8	2.42	Ciemat	
Ţ	Orbit correctors Q3 - Horizontal/Inner	MCBXFA	1	4 (IR1/5)	1.584	1.702	107.1	1.99	Ciemat	
nner .	Orbit correctors Q3 - Vertical/Outer	MCBXFA	1	4 (IR1/5)	1.402	1.502	232.3	1.98	Ciemat	
Ľ	Superferric, order 2	MQSXF	1	4 (IR1/5)	0.174	0.197	1530	18.12	INFN	
	Superferric, order 3, normal and skew	MCSXF / MCSSXF	2	8 (IR1/5)	0.099	0.112	213	54	INFN	
	Superferric, order 4, normal and skew	MCOXF / MCOSXF	2	8 (IR1/5)	0.102	0.115	220	54	INFN	
	Superferric, order 5, normal and skew	MCDXF / MCDSXF	2	8 (IR1/5)	0.092	0.106	120	54	INFN	
	Superferric, order 6	MCTXF	1	4 (IR1/5)	0.085	0.097	805	54	INFN	
	Superferric, order 6, skew	MCTSXF	1	4 (IR1/5)	0.084	0.094	177	54	INFN	
D1	Separation dipole D1	MBXF	1	4 (IR1/5)	12.11	13.231	24.84	0.41	KEK	
D2	Recombination dipole D2	MBRD	1	4 (IR1/5)	12.33	13.343	27.46	0.18	INFN	
-	Orbit correctors D2	MCBRD	4	16 (IR1/5)	0.394	0.422	920	1.36	CERN	
24	Individually powered quad Q4 (4.5K)	MQY								
0	Orbit correctors Q4 (4.5K)	MCBY								
05	Individually powered quad Q5 (4.5K)	MQML				05.05.0010		(F		ECR EDMS no.
0	Orbit correctors Q5 (4.5K)	MCBC	52	ame Circuit Para	inters for Q4	, Q5, Q6 and C	prrectors in IK1/	5 as in the LHC		2083813
Q6	Individually powered quad Q6 (4.5K)	MQML								
a	Orbit correctors Q6 (4.5K)	MCBC								
_	Individually powered quad Q10 (1.9K)	MQML	2	8 (IR1/5)	5.39	5.83	21	0.4	CERN	
Q10	Orbit correctors Q10 (1.9K)	MCB	2	8 (IR1/5)	0.055	0.06	6020	45.8	CERN	
Ũ	Lattice Sextupole (1.9K)	MS	2	8 (IR1/5)	0.55	0.6	432	7.5	CERN	
65	Individually powered quad Q5 (4.5K)	MQY	2	4 (IR6)	3.61	3.9	74	0.4	CERN	
ð	Orbit correctors Q5 (4.5K)	MCBY	2	4 (IR6)	0.088	0.1	5270	34.4	CERN	

Hardware Design Options

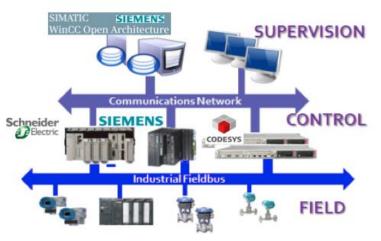
. New control architecture based on a PLC connected to a Distributed IO Tier crate (DI/OT) designed by BE-CEM-EDL to cope with the increase in radiation levels in the RR zones (L1) estimated at (EDMS 2302154):

Annual HL-LHC radiation levels	TID [Gy]	HEH [cm ⁻²]
RR13, RR17, RR53, RR57	25	1.4.10 ¹⁰
RR73, RR77	4	2.10 ⁹

COTS PSU

RaToPI I

2. If a relocation of the PIC electronics out of the RR is feasible (cabling), a full industrial control architecture based on PLCs with high speed capability for the Beam dump function can be used instead



Decision shall be taken by the end of this year

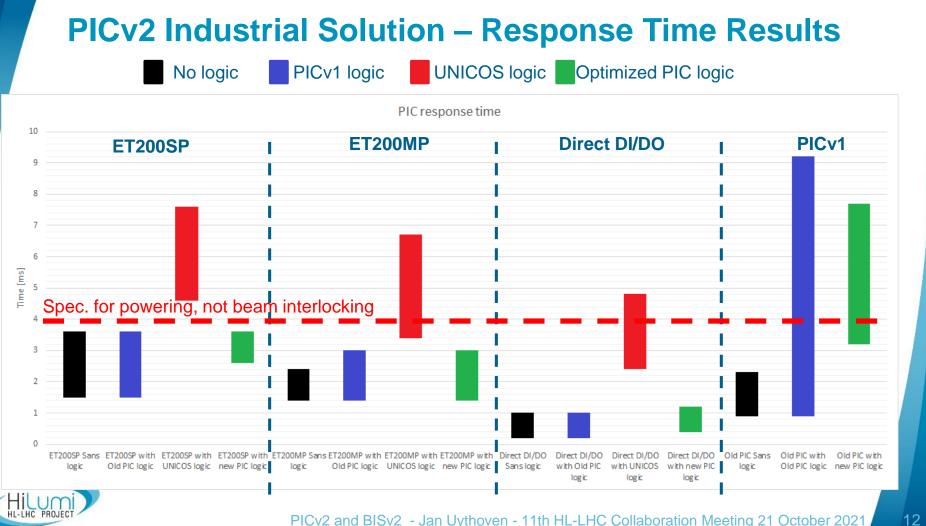
PICv2 and BISv2 - Jan Uythoven - 11th HL-LHC Collaboration Meeting 21 October 2021

PLC Software Design Options (in collaboration with BE-ICS)

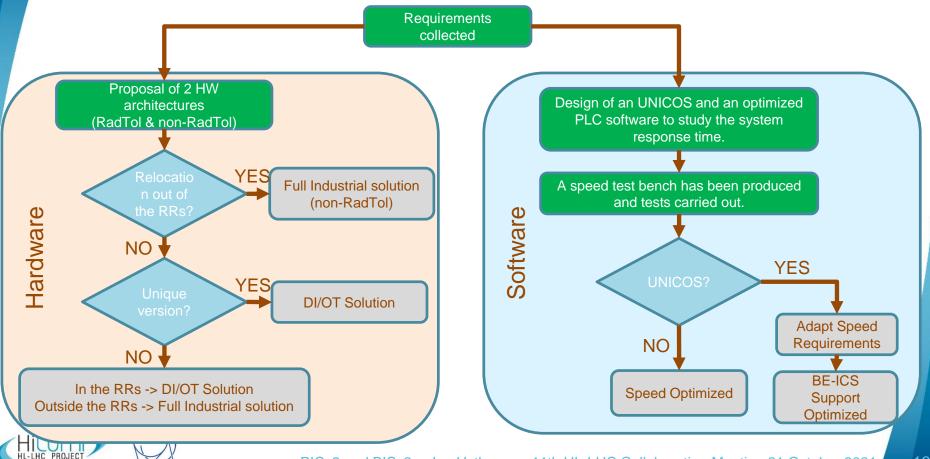
- 1. Keep the current software by making it compatible with the CPUs currently available on the market.
 - 2. Improve and optimize current software for ease of maintenance and future upgrades.
- 3. Design a new software based on UNICOS framework (**UN**ified Industrial **CO**ntrol **S**ystem) from BE-ICS.

PICv2 Design Status

- A preliminary <u>testbench</u> based on the industrial control architecture solution has been produced
 - To check feasibility of a full industrial solution for the PICv2
- To evaluate the response time of the system with different hardware and software configurations (not BIS connection, so far)
 - To ensure the PICv2 will perform at least as well as PICv1
- Exclusively made of industrial components (Power supplies and optocouplers) and the new Siemens S7-1500 series



PICv2 Test Bench Setups



* UNICOS software is not easily translatable to S7-300 CPU and was not tested on PICv1 test bench.

CERN

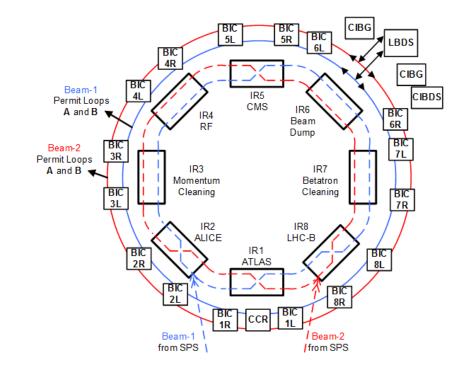
Project Strategy

Project Strategy – Timeline

• End of 2021

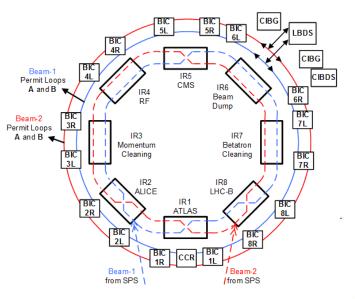
Decision on the relocation of the PIC components outside the RRs

• 2022:


• Delivery and commissioning of a first version of the PICv2 to the STRING

• 2023-2024

- First operational experience in STRING and validation of the final version(S)
 - Production of all parts
 - 2025-2026
 - Installation and commissioning in the LHC


The Beam Interlock System

The BIS in a nutshell

- The Beam Interlock System is a highly reliable, fast and available system which is designed to protect high energy accelerators from potential beam damage
- Deployed in the LHC, SPS, SPS to LHC Transfer Lines, SPS INJ, PSB EXT and LINAC4 (i.e. 50 BICs, 500 CIBU/Fs, tens of km of copper cables and optical fibres)
- Excellent dependability since first deployment in 2006 and majority of faults transparent for operations (e.g. redundant PSU, CPU faults...)
 - No blind failure during operation, 1 detected during HWC due to non-conform user system

Layout of the LHC Beam Interlock System

The BIS in a nutshell

- The Beam Interlock System is a highly reliable, fast and available system which is designed to protect high energy accelerators from potential beam damage
- Deployed in the LHC, SPS, SPS to LHC Transfer Lines, SPS INJ, PSB EXT and LINAC4 (i.e. 50 BICs, 500 CIBU/Fs, tens of km of copper cables and optical fibres)
- Excellent dependability since first deployment in 2006 and majority of faults transparent for operations (e.g. redundant PSU, CPU faults...)
 - No blind failure during operation, 1 detected during HWC due to non-conform user system

Typical LHC BIS crate and electronics boards

Motivation to upgrade the BIS

Obsolescence

- Aging limited spares, new installations and support up to the end of HL-LHC
- Discontinuity of electrical components Xilinx CPLD XC9500 and FPGA Spartan 3
 - Full occupancy of FPGA logic cells no space for implementing new features
 - Wiener crate Crate with redundant power supplies not supported anymore

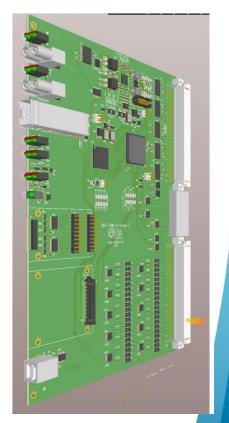
• New requirements

- Increased number of user inputs increase number of user inputs
- Enhanced linking of Beam Permit loops to mitigate risks due to beam-beam effects with fast failures
- Enhanced standardisation common interface between BIS and actuators (TE-ABT, BE-RF TE-EPC)
 - **FALSE frequency** to Beam Permit request to mitigate glitches in DC operation

Maintainability

- **Optical transmission** enhance power budget and provide remote diagnostics
- Timing interface improve interface to the timing system and the way timing events are used

Present BIS vs BIS 2v0


Requirement of Feature/Peripheral	BIS 1	BIS 2	Comments
Enhanced Optical Communications - SFPs	CIBO allows Beam Permit via Fibre only	SFPs allow BP via Fibre and Diagnostics	Tx/Rx Power, Tx Bias Current available, Temperature, Voltage, * <i>BIS 1.23</i>
Bus backplane communication	VME64	VME64x	BE-CEM support for HL-LHC lifetime Other platforms considered: PXI, DIOT, uTCA
CIBU interfaces	Current loops and differential signals	Current loops and differential signals	Kept compatibility with CIBU v1
More User Permits per BIC	14	20	More User Permits = Greater Flexibility
Redesign CIBF – BIC Interface	CIBFu => CIBFc => BIC	CIBF => BIC	Fibres can interface directly to the BIS crate via CIBF Interface card (CIBFi)
Greater Redundancy in CIBM Path (per A and B channels)	1	2	Splitting A and B will reduce chance of blind failures
Better interface of Timing Events/Signals	CTRV => CIBU => BIC	CTRV => BIC	Timing signals no longer need to be interlocked via a CIBU
Reduction in Form Factor of BIC boards	3 slots per CIBM, 3 slots per CIBM Tester (12 total)	1 slot per CIBM, 2 slots for single LED Display (6 total)	All operation will be handled by the CIBM, New crates have 4 slots fewer
Better On-board Analytical Peripherals	Basic Analysis, UART	Temperature, RTC, UART, EEPROM, ADC	No longer require specific instance testers
Maintain or Improve Reliability	No Blind-Dumps, MTBF > 1'000 years	No Blind-Dumps, MTBF > 1'000 years	

New Hardware: CIBM 2v0 – Manager board

- 2nd prototype (<u>EDA-04302-V2-0</u>): design finished in November 2020 and prototypes currently being tested in the lab
- PCB layout and production done in collaboration with BE-CEM-EPR
- Includes both monitor and critical paths (Xilinx Spartan 7 and Artix 7, interface to VME64x bus, SFP for Beam Permit Loops, UART for diagnostics, RTC, Temperature sensors...)
- Internal review organised with MPE-EP before launching prototypes
 - Prototype is fully functional and very similar to the final CIBM in production
 - This design is used as a **template for other boards**

CIBM 2v0 - Electronics hardware

New Hardware: CIBU 2v0 – User permit interface

- 2nd prototype (<u>EDA-04288-V2-0</u>): design finished in June 2021, **2 prototype boards**
 - Production and assembly launched in collaboration with BE-CEM-EPR
- Improvements on availability: enhanced remote diagnostic capabilities (i.e. monitoring of User Permit currents and voltage/current of redundant power supplies)
- Improvements on maintainability and cost: EEPROM with unique ID (pre-programmed from factory), real-time counters for reliability calculations and Igloo2 FPGA for diagnostics
 - <u>Hardware compatible with v1</u> (same hardware interfaces but different firmware)
 - Radiation tolerant design Electronic parts already tested at PSI and soon at CHARM

CIBU 2v0 – Electronics hardware

New Hardware: CIBFi 2v0 – Optical interface on controller side

- 1st prototype (<u>EDA-0446-V1-0</u>): design finished in September 2021
- PCB layout, production and assembly done in collaboration with BE-CEM-EPR

Designed to receive User Permit signals over long distances (up to 10 km)

- Works in conjunction with a CIBFu (optical interface on user side)
- Allows to connect up to 3 CIBFu and receive inputs from 3 users
- Equipped with redundant XILINX Artix 7 FPGAs for critical path
- Uses commercial SFP (Small Form-factor Pluggable) transceivers
- Possible use in SMP 2v0 for direct transmission of SMP flags to BIS controllers

CIBFi 2v0 – Electronics hardware

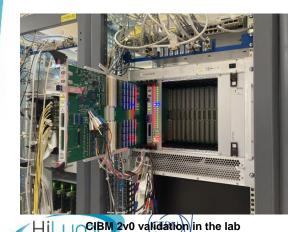
Radiation test campaigns at PSI

CIBUs will be installed in radiation areas (e.g. RR alcoves) => radiation-tolerant design required

		Annual (360 fb⁻	$^{-1}$) HL-LHC radiatior	n levels
	TID [Gy]	HEH $[cm^{-2}]$	Th. neut. $[cm^{-2}]$	1MeVn-eq [cm ⁻²]
RR13-17-53-57 LO	15	$1\cdot 10^{10}~\mathrm{cm}^{-2}$	$9\cdot 10^{10}~\mathrm{cm}^{-2}$	$7\cdot 10^{10}~\mathrm{cm}^{-2}$
RR13-17-53-57 L1	25	$1.4\cdot 10^{10}{ m cm}^{-2}$	$1.2\cdot 10^{11}~{ m cm}^{-2}$	$7\cdot 10^{10}~\mathrm{cm}^{-2}$


Source: HL-LHC Radiation level specification document, EDMS 2302154

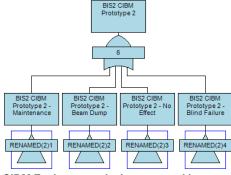
- All CIBU electronic parts have been irradiated with a 200 MeV proton beam to a dose up to 500 Gy and fluences up to ~8.5x10¹¹ p/cm² in order to meet HL-LHC R2E specifications (in collaboration with BE-CEM)
- Radiation-sensitive components were identified, and corrective actions will be implemented in the final hardware version:
 - INA240A1D: current sense amplifier (experienced latch-ups above 25 Gy)
 - TPS3808G33DBVT and TPS3808G12DBVT: Programmable delay supervisory circuit (died after 85 Gv, variable reset duration after 60 Gy)



CIBU Testbed and CIBM validation

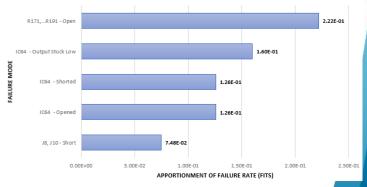
- Hardware testbed designed to verify and program the CIBU production
 - NI PXI platform used as a General Tester Crate (GTC)
- A Test Controller Card (TCC) has been designed to interface the GTC and the CIBU
 - Test sequences implemented in LabWindows-CVI

CIBU 2v0 Testbed platform


- **CIBM prototypes under validation** in the BIS lab
- Firmware is completed and functionality is working
- Communication between CIBU and CIBM is validated
- Beam Permit Loops and critical functionality is validated

Reliability calculations

- The **reliability targets** set for BIS v2 are unchanged:
 - False dump: 1 / Year
 - Blind failure: 1 / 1000 Years
- Isograph is used to calculate the failure rate of electronic cards based on component level analysis
- FMECA analysis carried out for assessment of failure effects of the individual components: false dump or blind failures
 - Completed for the CIBM and CIBU, ongoing for CIBFi
 - Fault-tree analysis to estimate the the overall probability of occurrence of the system failures & assess new architecture
- AvailSim4 for advanced simulation of system monitoring and repair strategies, allowing for direct comparison of failure probabilities with reliability targets


Work ongoing

CERI

CIBM Fault tree analysis generated by Isograph

Blind Failure: Failure Mode vs Apportionment of Failure Rate

Plot Showing Failure Mode vs Apportionment of Failure Rate for Blind Failure of the CIBM

PICv2 and BISv2 - Jan Uythoven - 11th HL-LHC Collaboration Meeting 21 October 2021

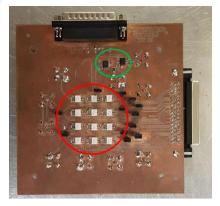
BIS 2v0 Planning

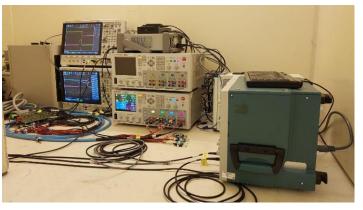
Gantt: BIS v2 Roadmap					
Add 🔻 😫 Delete 👻 🖌 Edit 👻 🗢 View 👻	↑↓ Data 👻				Jump to Gantt Bar Today 🕊 » Bird's-eye view 🔻
Project/Version/Issue 1	A prime o	Units	Start date	Finish date	2018
Projectiversion/issue	Assignee	Units	Start date	Finish date	18 19 20 2 24 25 26 27
▼ 🧕 BIS v2.0 project					0 L52 Kvan Romera Ramirez
🗹 0 LS2	🔘 Ivan Ro	0%	1/Jan/19	7/May/21	0 L52
🗹 1 RUN 3	🔘 Ivan Ro	096	10/May/21	31/Dec/24	Van Romera Ramirez
✓ 2 LS3	🔘 Ivan Ro	0%	1/Jan/25	1/Jan/27	2 LS3 Vian Romera Ram
3 WB5_BIS v2	🔘 Ivan Ro	0%	1/Apr/19	20/Sep/27	3 WB5_BIS v2
🕨 🗹 1 Analysis and technical specificati	🔘 Ivan Ro	0%	1/Apr/19	21/Sep/21	ical specifications
🕨 🗹 2 Hardware design and implemen	🔘 Ivan Ro	0%	1/Jul/19	19/Apr/23	Ivan Romera Ramirez
🕨 🗹 3 Testbed design	🔘 Ivan Ro	0%	2/Aug/21	5/Sep/23	estbed design
4 Mass production	🔘 Ivan Ro	0%	6/Sep/23	4/Oct/24	4 Mass production 5 Deployment
🕨 🗹 5 Deployment	🔘 Ivan Ro	0%	7/Oct/24	20/Sep	5 Deployment Van Ru
6 Commissioning	🔘 Ivan Ro	30%	1/Jan/25	21	6 Commissioning Ivan Romera Ram
🕨 🗹 7 Software	🕍 Jean-Chr	0%	2/May/22	1/Se	7 Software Jean-Christophe Garnier
🗹 8 Reliability studies	🔘 Ivan Ro	O96	1/Dec/20	1/Dec/	8 Reliability studies Ivan Romera Ramirez

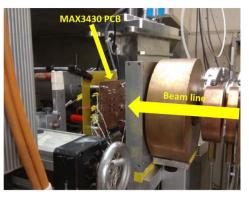
ConclusionsPICv2

- No new PIC functionalities in the scope of the HL-LHC
- Decide on possible relocation of the PIC out of radiation zones by the end of this year
 - On track for first implementation in the String
 - The first speed test results of an industrial version of the PIC are very promising

BISv2

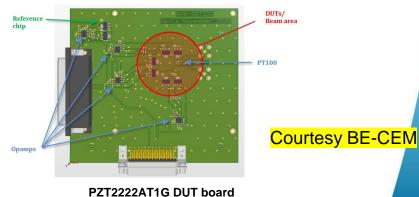

- Good progress with the design of prototypes (CIBM, CIBU and CIBFi) and testbeds
 - Related system Safe Machine Parameters V2 is also on track
- Radiation test campaigns at PSI allowed to validate the electronic parts of the CIBU Additional tests are foreseen at CHARM in Q1-2022
 - Reliability analysis of the complete BIS system ongoing
 - On track for deploying BIS 2v0 in the SPS, LHC and its Transfer Lines in LS3
 - *Long delivery delays of electronics components are a worry


Spare Slides


Radiation test campaigns at PSI

FOD060LR2 PCB tested at PSI

Instrumentation setup to collect data during tests



MAX3040ESA tested at PSI

AD7291 ADC test board on the beam line

PICv2 and BISv2 - Jan Uythoven - 11th HL-LHC Collaboration Meeting 21 October 2021

80	MenA25 and Timing receiver	SLOT 1	0
	Free	SLOT 2	۲
8		SLOT 3	
8	Manager board Beam 1 – CIBM_B1	SLOT 4	۲
8		SLOT 5	
8		SLOT 6	
8	Test / Monitor Board Beam 1 – CIBT_B1	SLOT 7	۹
8		SLOT 8	
8		SLOT 9	
8	Test / Monitor Board Beam 2 – CIBT_B2	SLOT 10	۲
8		SLOT 11	
8		SLOT 12	
8	Manager board Beam 2 – CIBM_B2	SLOT 13	۲
8		SLOT 14	
	Loop Generator Beam 1 – CIBG_B1	SLOT 15	۹
	Redundant trigger Beam 1 – CIBDS_B1	SLOT 16	۲
8	Free	SLOT 17	0
8	Free	SLOT 18	۲
8	Free	SLOT 19	0
80	Free	SLOT 20	0
8 °	SMP flag receiver - CISV	SLOT 21	۲

BIS 1v0 crate in UA63	BIS 2v0 crate in UA63
B fully sp redundai integratio	ncy and
•	M channel A maintain ncy
Direct fib interface	(
Direct C	TRV conn.
Wiener 64X po supplies at the back, large	(
ELMA VN suppy at	1E 64X power the front

0	Processor board / Men A25	
9	Manager board – CIBM_B1_A	SLOT 2
•	Manager board – CIBM_B1_B	SLOT 3
۲	Manager board – CIBM_B2_A	SLOT 4
۹	Manager board – CIBM_B2_B	SLOT 5
9	Generator board – CIBG_B1-A	SLOT 6
0	Generator board – CIBG_B1_B	SLOT 7
۹	Retrigger board – CIBDS_B1_A	
0	Retrigger board – CIBDS_B1_B	
8	Optical interface board – CIBFi_1	SLOT 10
9	Optical interface board – CIBFi_2	SLOT 11
9	Optical interface board – CIBFi_3	SLOT 12
9	Optical interface board – CIBFi_4	SLOT 13
0	Free	SLOT 14
9	Free	SLOT 15
۲	Timing receiver - CTRV	SLOT 16
9	SMP flag receiver - CISV	SLOT 17
	ELMA Power Supply – 500 W	SLOT 19
	ELMA Power Supply – 500 W $\int_{\tilde{t}_{\ell}}^{\Gamma^{O}}$	SLOT 21

PICv2 and BISv2 - Jan Uythoven - 11th HL-LHC Collaboration Meeting 21 October 2021