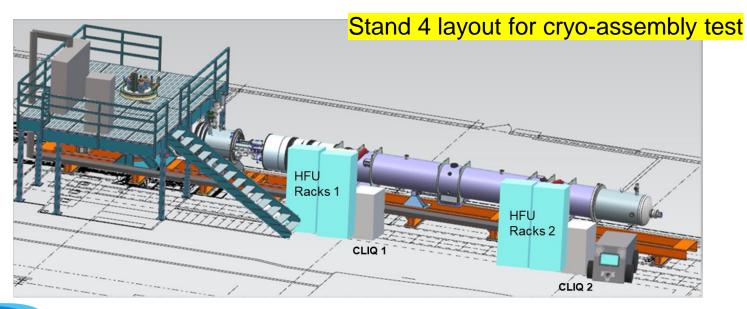


LQXFA/B Cryo-assembly Test


Guram Chlachidze Fermilab

> 11th HL-LHC Collaboration Meeting CERN 19-22 October 2021

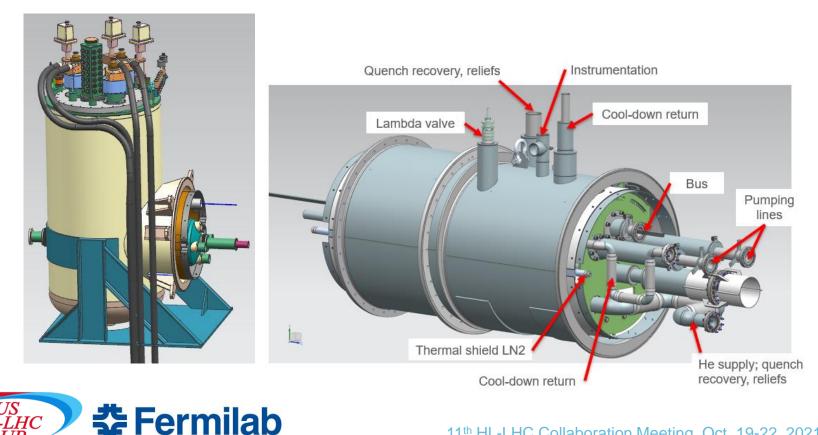
Horizontal Test Facility at Fermilab

- The only test facility in the USA capable to test the HL-LHC AUP Q1/Q3 cryo-assemblies
 - Previously used for testing the present LHC inner triplet quadrupoles at Fermilab in 2001-2006
- Project scope includes horizontal test of 12 cryo-assemblies 2 pre-series, 8 series production and 2 re-works
 - First pre-series cryo-assembly test is expected to start in March 2022

娄Fermilab

Horizontal Test Stand (Stand 4) Upgrades

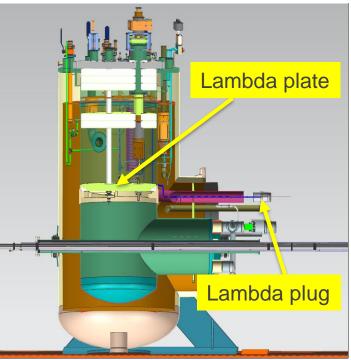
- Major Stand 4 upgrades were completed and then successfully commissioned during the zero-magnet test in Oct-Dec 2020
 - Cryogenic Feed-Box/End-Box modifications
 - Design and fabrication of the Adapter Box between the Feed-box and the cryo-assembly
 - Cryo-assembly supports, lifting fixture
 - Interconnects, vacuum adapters
 - Controlled cool-down/warm-up system, new external cryogenic lines
 - Power bus refurbishment, new water-cooled flexible power leads
- Warm-finger (anti-cryostat) assembly with 100 mm inner diameter
- Process Controls upgrade at the horizontal test stand
- Quench Protection and Monitoring Systems


Fermilab

US IL-LHC

Development and assembly of magnetic measurement systems

Major Cryo-mechanical Upgrades

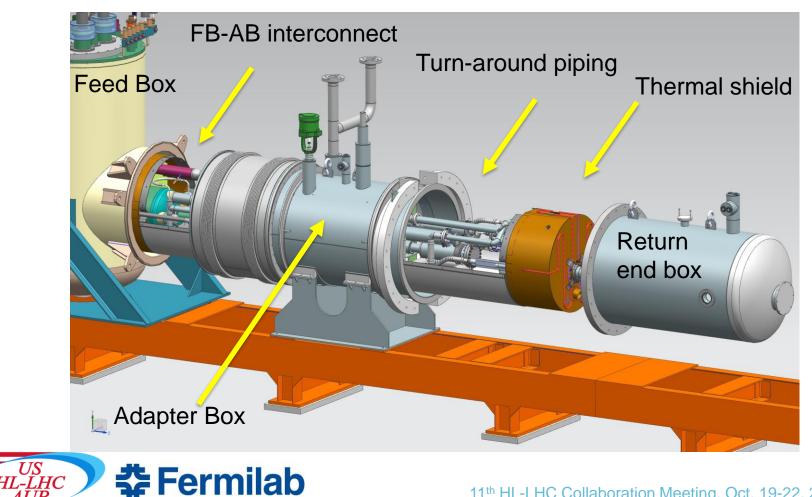

- Important addition to the stand new Adapter Box designed and built as an interface between the existing cryogenic feed box and the new cryo-assemblies
 - Making use of old components, including the feed box, the feedbox insert (Top plate), vapor-cooled power flags

New location of the Lambda plug

- Separation between the 4.5 K and 1.9 K temperature levels moved from the Feed box to the Adapter box
 - A proven CERN lambda plug design was modified for the Horizontal test stand
- Shorter pump-down times and less liquid helium usage
- We can reproduce LHC tunnel conditions after quench
 - High Pressure up to 17 bar

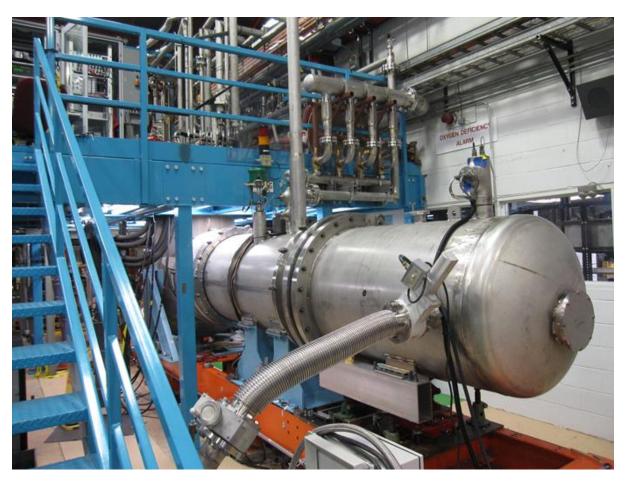
 Lesson learned from testing old LHC magnets - due to limited maximum test pressure (~4.5 bar) some cryo-assembly components failed at CERN under higher pressure test

Controlled cooldown


- Maximum temperature difference between the ends of the cold mass must not exceed 50 K
- Controlled cooldown is accomplished in two stages: for temperatures above and below 80 K
 - For 300 K to 80 K cooldown, helium gas is cooled in a liquid nitrogen bath and then mixed with the 300 K helium
 - For further cooldown, 80 K helium gas is mixed with 4.5 K liquid helium

US HL-LHC

Zero-magnet test configuration


Most upgrades have been installed at the Horizontal test stand and successfully verified during the zero-magnet (shorted bus) test in Oct-Dec 2020

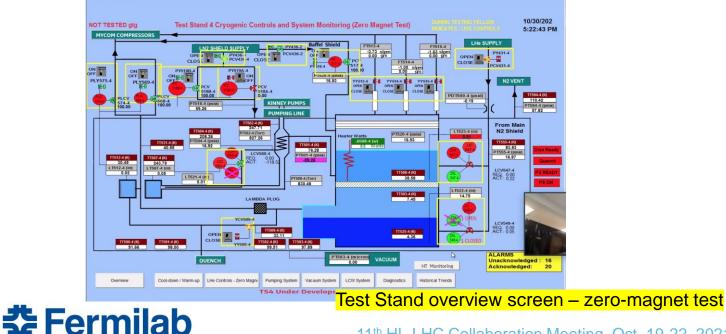
11th HL-LHC Collaboration Meeting, Oct. 19-22, 2021

Zero-Magnet Test

 Zero magnet test was a critical milestone for the Horizontal Test Stand Upgrade Project

Zero-magnet Test Results

- Functionality of the upgraded systems were successfully verified
 - New transfer lines, U-tubes
 - New adapter box, Feedbox to Adapter box Interconnects
 - Insulating vacuum
 - Cooldown and safe operation (including new lambda plug) at high pressure (17 bar)
 - High Voltage Withstand Levels passed at room and cryogenic temperatures (300 K, 4.5 K and 100 K)
- Controlled cooldown and warmup procedures verified
- Main vapor-cooled power leads verified up to 18.5 kA
 - The middle power lead achieved 17.6 kA which is sufficient for training individual magnets up to the ultimate current
- New Quench Protection and Monitoring Systems



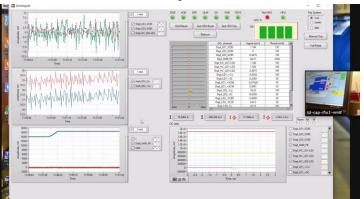
Zero-magnet Test Results (2)

- New Process Controls system was successfully used during the zero-magnet test
 - Additional automation capabilities were added

US HL-LHC

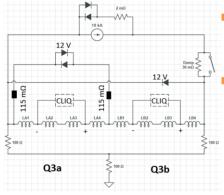
- Control loops for feed box liquid helium level, return end liquid helium level, feed box pressure control, and thermal shield pressure control were tuned
- It was the first for many years successful cooldown at Stand 4

Quench Protection and Monitoring


Full commissioning of the QPM system

Real quench was successfully detected

🛟 Fermilab


US HL-LHC

LQXFA quench simulations

- Peak voltage-to-ground calculated during a LQXFA quench at Stand 4
 - Simulations performed using the STEAM (CERN) framework, as well as LEDET and PSPICE software (V. Marinozzi with E. Ravaioli's help)
 - CLIQ failures simulated for various protection scheme

1. No Dump, No CLIQ failures, 12 V bypass diodes on Q3a

- 2. No Dump, Q3a CLIQ failure, 12 V bypass diodes on Q3a
- 2b. No Dump, Q3a CLIQ failure, 12 V bypass diodes on Q3a (Q3a didode resistance is 200 mOhm instead than 115 mOhm)
- 3. No Dump, No CLIQ failure, no diodes on Q3a
- No Dump, Q3a CLIQ failure, no diodes on Q3a
- 5. 30 mΩ Dump, No CLIQ failures, 12 V bypass diodes on Q3a
- 6. 30 mΩ Dump, Q3a CLIQ failure, 12 V bypass diodes on Q3a
- 30 mΩ Dump, No CLIQ failure, no diodes on Q3a
- 30 mΩ Dump, Q3a CLIQ failure, no diodes on Q3a
- 9. 2.5 mΩ Dump, No CLIQ failures, 12 V bypass diodes on Q3a
- 14. No Dump, Q3a CLIQ failure, no diodes on Q3a, magnet midpoint grounded
- 18. 30 mΩ Dump, Q3a CLIQ failure, no diodes on Q3a, magnet midpoint grounded
- 25. 15 mΩ Dump, No CLIQ failures, 12 V bypass diodes on Q3a
- 15 mΩ <u>Dump</u>, Q3a CLIQ failure, 12 V bypass diodes on Q3a
 30 mΩ Dump, No CLIQ failures, 12 V bypass diodes on Q3a,
- 30 mΩ <u>Dump</u>, No CLIQ <u>failures</u>, 12 V bypass <u>diodes</u> on Q3a, 10 <u>ms dump</u> delay
 30 mΩ <u>Dump</u>, Q3a CLIQ <u>failure</u>, 12 V bypass <u>diodes</u> on Q3a, 10 <u>ms dump</u> delay

Extra warm diodes are required to protect magnets in case of a single CLIQ failure

No dump operation is recommended

Vittorio Marinozzi

	CASE	Peak Q3a Magnet Voltage To-ground [V]	Peak Q3b <u>Magnet</u> Voltage To-ground [V]	Peak magnet midpoint voltage To-Ground [V]	Peak Q3a diodes current [A]	Peak current to- ground [A]	Hot Spot Temperature [K] (a/b)	Energy dissipated into dump resistor [*] [%]
No Dump	1	459	459	100	26·10 ⁻³	0.6.10-6	233/233	N/A
	2	434	481	300	1200	0.25·10 ⁻⁶	279/246	N/A
	2b	435	480	300	1100	0.25·10 ⁻⁶	279/246	N/A
	3	459	459	100	N/A	0.6.10-6	233/233	N/A
	4	1238	1227	1238	N/A	0.25.10-6	263/271	N/A
30 mD	5	764	462	462	500	0.4.10-6	215/229	6.94
	6	671	466	671	700	0.3.10-6	239/241	
	7	1042	768	768	N/A	0.5.10-6	231/239	
	8	1744	1240	1240	N/A	0.2.10-6	237/250	
2.5 mΩ	9	480	460	120	0.1	0.6.10-6	231/232	
As.4	14	1044	1033	1044	N/A	0.35.10-6	263/271	
As 8	18	1512	1009	1500	N/A	0.4·10 ⁻⁶	237/250	
15 mΩ	25	612	463	230	270	0.4.10-6	224/232	3.58
	26	444	468	444	900	0.35.10-6	258/244	
30 mΩ 10 ms	35	515	459	459	440	0.4.10-6	223/233	6.37
	36	703	467	250	800	0.3.10-6	247/243	

Magnetic measurement systems

- Rotating coil and Single Stretched Wire Systems will be used for alignment, field strength and harmonics measurements
- Two identical SSW systems are assembled and ready for operation
 - SSW1 successfully used in the first pre-series cold-mass measurements
 - SSW2 has been comprehensively tested and cross-checked

Warm finger assembly

Tubes clamped to keep circular shape

‡ Fermilab

SS heater strips applied on the inner tube MLI applied to the inner tube US HL-LHC AUP

Warm finger assembly (2)

- Warm fingers assembly tested at Stand 4 with the upgraded probe drive system
 - Laser tracker used for precise location of the magnetic measurement probe

Pre-series Cryo-assembly Test Preparation

- Upgrade of some components was completed after Zero-magnet test
- Quench recovery line assembly
- LCW (cooling water) system re-work at Stand 4 significantly improved cooling of the flexible power leads
- Quench Protection and Monitoring System for the production test
 - More DQD and AQD channels for the magnet test
 - Production Quench Monitoring System (Tier-III)
 - Upgraded current control and FO readout systems
 - Active Ground Fault System
- Reusable piping spools for cryo-assemblies
 - These components are required for Horizontal Test at Fermilab and will be removed before sending cryo-assembly to CERN

New Coldbox

- New liquefier will increase total LHe make rate to 600 ltr./hour and total liquid storage volume to 14,000 ltr.
 - Current cooling capacity: CTI-1500 liquefier with liquefaction rate up to 300 ltr./hour and 10,000 ltr. storage dewar
 - New liquefier is expected fully functional next spring

Other Off-project Improvements

- Various improvements have been made to improve overall reliability of the cryo-plant and power system at Fermilab's Magnet Test Facility
 - Full stream purification system helps to control contamination level
 - Four 30,000-Gal tanks were added to the existing six buffer tanks for storage of helium gas
 - Mycom Compressors added to the Warm Compressor System
- Combination of higher liquefaction and LHe storage capacities will significantly increase throughput in magnet and SRF cavity testing
 - Practically no downtime due to cryo-plant maintenance
- Existing 30 kA power system will be used for Q1/Q3 cryo-assemblies horizontal test
 - All water hoses and fittings were replaced recently
 - Dump switch charging circuits upgraded
 - Additional LOTO test points implemented

Cryo-assembly Test Plan & Documentation

- Documents of four different types will be under revision control
 - Test Plan
 - Test Procedures
 - Test parameters, conditions and results
 - Test checklist
- Every cryo-assembly will have a separately approved Test Plan
 - Describes most of the steps to be executed in detail
 - Essential parameters are explicitly written in the plan
- Test procedures describe various tests and equipment setup to be executed prior or during the test
 - More general documents without specifying test values
- Test parameters, conditions and results are consolidated in a single Excel spreadsheet
 - Describes all the test parameters required in Test Procedures, as well as detailed test conditions and results

Cryo-assembly Test Plan & Documentation (2)

- Test checklist
 - Guides the test step-by-step
 - Sign off is required for critical steps
 - Simplified Traveler
- Cryo-assembly Test plan is drafted
 - Full thermal cycle is planned for the pre-series cryo-assemblies and for the last two cryo-assemblies with magnets trained at Fermilab
- Magnetic measurement plan development still in progress
- Most of the test procedures were developed and successfully used during Zero-magnet test
 - Minor modifications are required for the cryo-assembly test
- Test reports will be generated for each cryo-assembly

Summary

- Functionality of the upgraded Horizontal Test Stand components were successfully verified during Zero-magnet test in Oct-Dec 2020
 - Quench recovery and 1.9 K cooldown of magnets will be verified only during the pre-series cryo-assembly test
- New Process controls system was successfully tested
 - Few more instrumentation will be added for the pre-series cryo-assembly test: the magnet and warm finger temperature sensors, quench line pressure and temperature sensors
- Quench Protection and Monitoring system for the production cryoassembly is under integration tests
- Commissioning of SSW systems is complete, Rotating coil measurement system integration tests will be carried out in Oct-Nov
- Need to obtain Operation Readiness Clearance for the production cryo-assembly test
- Production test preparations are close to completion

🚰 Fermilab

US HL-LHC

