Radiation Tolerant BLM ASIC Development

C. Zamantzas, F. Martina (CERN)

11th HL-LHC Collaboration Meeting, CERN – 19-22 Oct. 2021 https://indico.cern.ch/event/1079026/

Overview

- System Overview
- Development
 - Status and Progress
 - Roadmap and future plans
- Future Deployment
- Conclusions

LHC BLM System Overview

- Highly critical system for the protection of LHC
- Deployed all around the 27 km of the tunnel
- Speed, Reliability, Fail-safety is required
- Large amount of measurement data are published continuously

Development Progress

21/10/2021

Acquisition Crate

- First functional version of the crate ready including power supplies and backplane
- Working on the remote control card (via nanoFIP) and acquisition modules

All connections from the front side Electronics enclosed in a mini-rack

Acquisition Electronics

- Two distinct designs on-going
 - BLECF v2 (upgrade) with distinct components (COTS & ASIC)
 - BLMASIC encapsulating both analogue & digital functions in rad-hard ASIC

Commonalities pursuit

- Size and form factor, i.e. one cartridge of 6HP
- Backplane connection and power scheme
- Communication (IpGBT & SM-VTRx)
- Acquisition frequency and range
- Additional advantages (TBC)
 - Interchangeable where necessary
 - Main processing blocks common

BLMASIC: Current-to-Frequency or Δ/Σ Converter

- Two analogue-to-digital converter circuits have been under investigation:
 - Current-to-Frequency (CFC) & Δ/Σ converter
 - v2 achieved linearity and low current measurement specs
 - Preliminary results from x-ray irradiation exceeds specs
- Next version (v3) is focusing on the CFC type only
 - Address ESD, power and minor digital part issues
- Some delays due to COVID-19
 - Dependency on foundries and packaging of the devices
- Fabrication completed for 200 units
 - Waiting return of the devices from the packaging company

Standard 64-pin Quad Flat Package (10x10 mm)

BLMASIC: Testbench

- ASIC performance validation
- Comparison between ASIC architectures
- Reliability tests
- Radiation hardness validation

BLMASIC: Validation

- The tests carried out reported performance well inside specifications
- The electronics noise is below 500fA
- The characterisation methodology procedures has been consolidated
- X-Rays test at TID of 1MGy does not reported conversion behaviour drifts

Latest Testbench Architecture

BLMASIC: first post-irradiation results (version 2)

- Conversion characteristic (left plot) and absolute errors (right plot)
- by a logarithmic current sweep of 500 values from 1 nA to 1 mA. The averaging time window is set to 100 μ s.
 - Relative error :
- Below 10 % from currents greater than $3\mu A$
- Below 1 % from 35μ A to 1mA

BLEIC: Printed Circuit Board Prototype (1/2)

New prototype PCB design complete

- Includes all functionalities expected from the final system
- Common digital parts, control and form with standard BLM acquisition board.
- Secured prototypes of the other custom parts, e.g. the SM-VTRx and LpGBT.

Prototype production completed and tested to be functional

This board variant is able to accommodate both BLMASIC v2 & v3

BLEIC: Printed Circuit Board Prototype (2/2)

Components: < 400 pcsCost: expected < 1 kCHF/unit

(COTS version of the board >2000) (COTS version > 3 kCHF/unit)

Roadmap

21/10/2021

Development Roadmap

2019		2020						
Q3	Q4		Q1 Q2		22			Q4
BLMASICv1 Submission and test-bed design	BLMASICv1 delivery and beginning of the preliminal lesign characterisation		Long acquisitions test-bed assembly and noise characterisation of the $\Delta \Sigma$ device	acquisitions test-bed nbly and noise acterisation of the evice BLMASICv2 design planning and noise characterisation of the CFC device		Correction of the Wilkinson ADC bug in the CFC device and BLMASICv2 design submission		BLMASICv2 delivery and beginning of the installation Front-End prototype development
2021								
Q1		Q2		Q3			Q4	
Preliminary characterisation of the BLMASICv2 device and Front-End design review X-Rays s		Noise charac with the late X-Rays sessic	haracterisation of the BLMASIC-CFCv2 e latest test-bed system. session on the CFC.		Submission of the BLMASICv3, Front-End card delivery and assemb		Acquisition Back-End firmware development bly and expected delivery of BLMASICv3 device	
2022								
Q1		Q	2		Q3		Q4	
Installation Front-End card conversion performance characterisation and irradiation test		eam test of the prototype system and eliability validations		Diagnostic features and availability validation		lity BLM syster	n integration	

Future Deployment

21/10/2021

BLEIC: LS3 Triplet Layout BLM detectors Work in progress together with WP15

LHC triplet layout

HL-LHC triplet layout

Proposal: BLECF // (BLEIC/2) Half channel redundancy

Number of detectors: IP-side								
	Present System Run 3	HL-LHC Upgrade Run 4	New in Run 4					
BLECF – standard	18	32	14					
BLEIC – new	0	16	16					
subtotal	18	48	30					

Number of detectors: IP1 + IP5 (both sides)							
	Present System Run 3	HL-LHC Upgrade Run 4	New in Run 4				
BLECF – standard	72	128	56				
BLEIC – new	0	64	64				
Total IP1+IP5	72	192	120				

1 multiwire cable / module 1 BLEIC module = 8 channels

Conclusions

- Development progress is well advanced
 - Several parts already in functional prototype phase
 - Characterisation of ASIC version 2 showed encouraging results; more checks in the pipeline
 - Version 3 of ASIC focuses on the current-to-frequency method only
 - Latest version of the ASIC is expected in the next weeks
- Demonstrated advantages of ASIC based version of the acquisition electronics
 - Extremely compact PCB to host all functionalities
 - Lower costs and maintenance effort
 - Backwards compatible with the standard COTS version
- Main functionalities
 - Radiation tolerant electronics up to 1 kGy
 - 10 µs acquisition period & real-time processing
 - 8 orders of dynamic range (from few pA to 1 mA) measurements
 - On-board diagnostics and telemetry
 - Bidirectional communication with the acquisition electronics

Acknowledgements

- ADC & other rad-hard ICs:
 - Kostas Kloukinas
 - Alessandro Marchioro
- BLMASIC:
 - Jan Kaplon
 - Luca Giangrande
 - Pedro Vicente Leitao
- LpGBT
 - Daniel Hernandez Montesinos
 - Paulo Moreira

- SM-VTRx
 - Jan Troska
 - Carmelo Scarcella
 - Leonardo Marcon
 - Manoel Barros Marin
- Rad-Tol COTS:
 - Rudy Ferraro
 - Salvatore Danzeca
- Fibre & Copper connections:
 - Jeremy Blanc
 - Daniel Ricci

Many thanks to our colleagues for contributing with their technical expertise !!!

Thank you for your attention!

