

Impact of broad-band impedance on longitudinal coupled-bunch instability Ivan Karpov, CERN

Acknowledgements:

Theodoros Argyropoulos, Alexey Burov, Rama Calaga, James A. Mitchell, Nicolas Mounet, Sigurd Nese, Elena Shaposhnikova, and Helga Timko the 11th HL-LHC Collaboration Meeting, CERN, 19-22 October 2021

Longitudinal stability of multi-bunch beam: LHC

- using macro-particle simulations for ≈ 3000 bunches is computationally very expensive
- Instead, it can be analytically calculated for one narrow-band impedance (from stability diagrams of Balbekov and Ivanov using Lebedev equation)
- Coupled-bunch instabilities were not observed so far, as expected for nominal LHC beams, contrary to the loss of Landau damping (LLD) due to inductive impedance Im Z/k ($k = f/f_0$)

Longitudinal stability of multi-bunch beam: HL-LHC

- For HL-LHC intensity, one higher order mode (HOM) of DQW crab cavities (CC) is only by factor of 2.7 below the CBI threshold.
- \rightarrow The impact of loss of Landau damping (Im Z/k) on the multi-bunch instability threshold can be critical

Loss of Landau damping in LHC Single bunch

LLD threshold is *(IK, TA, ES, PRAB 2021)*

$$
N_{\rm th} \propto \frac{V_{\rm rf} \tau^4}{f_c \left(\text{Im} Z / k \right)_{\rm eff}}
$$

- Effective impedance $(\text{Im} Z/k)_{\text{eff}}$ can be computed for arbitrary impedance model
- Knowledge of effective cutoff frequency f_c is crucial
- Dependence on bunch length τ in 4th power

Results agree with semi analytical calculations using code MELODY*

**Matrix Equations for LOngitudinal beam DYnamics*

Loss of Landau damping in LHC Single bunch

LLD threshold is *(IK, TA, ES, PRAB 2021)*

$$
N_{\rm th} \propto \frac{V_{\rm rf} \tau^4}{f_c \left({\rm Im} Z/k \right)_{\rm eff}}
$$

- Effective impedance $(\text{Im} Z/k)_{\text{eff}}$ can be computed for arbitrary impedance model
- Knowledge of effective cutoff frequency f_c is crucial
- Dependence on bunch length τ in 4th power

Results agree with semi analytical calculations using code MELODY*

**Matrix Equations for LOngitudinal beam DYnamics*

LLD threshold in **LHC** for different distributions (μ)

HL-LHC impedance model and $(Im Z/k)_{eff}$

Model from May 2020 (*N. Mounet)* with broadband (BB) resonator impedance at $f_r = 5$ GHz

Effective impedance

$$
(\text{Im}Z/k)_{\text{eff}} = \frac{\sum_{k=1}^{k_c} G_{kk} \text{Im}(Z_k/k)}{\sum_{k=1}^{k_c} G_{kk}}
$$

$$
G_{kk} = \frac{1}{2} - J_0^2(y) - J_1^2(y) + \frac{J_0(y)J_1(y)}{y}, y = \pi k f_0 \tau
$$

The maximum of nominator is reached at $k_c=f_{\rm c}/f_0$ *(S. Nese, 2021)*

 \rightarrow For 4 σ bunch length of about 1.3 ns $\left(\text{Im}Z/k\right)_{\text{eff}} \approx 0.075$ Ohm, $f_c \approx 5.8$ GHz

Threshold reduction due to BBR impedance

MELODY has been extended to multi-bunch case (using extended Oide-Yokoya method)

Results for broad-band $(\text{Im} Z/k)_{\text{eff}} \approx 0.075 \Omega$ + narrow-band ($R_{\rm sh} = 4 \times 71$ kΩ, $f_r = 582$ MHz) resonators

 \rightarrow For this HOM, the CBI threshold is about ~3 higher than HL-LHC intensity

 \rightarrow In the presence of BB impedance, the CBI threshold is reduced at \sim LLD threshold

Coupled-bunch instability in **HL-LHC**

Types of coupled-bunch instability

It was expected that multi-turn or CB wake can make LLD mode unstable *(Y.H. Chin, et al, 1982)*

Mode structure BB + HOM, growth rate \sim 0.13 1/s Mode structure HOM only, growth rate \sim 0.13 1/s $units)$ units -0.4 -0.2 (arb. (arb. 0.2 Density modulation modulation ϕ'/ω_{s0} ϕ'/ω_{s0} 0 0.0 -0.0 -1 ensity Φ Φ

 \rightarrow In presence of broad-band impedance and small growth rate, unstable mode is localized in bunch center (LLD type), which is different from the case of HOM alone

Types coupled-bunch instability

It was expected that multi-turn or CB wake can make LLD mode unstable *(Y.H. Chin, et al, 1982)*

 \rightarrow At significantly higher intensity, the most unstable modes look similar with and w/o BB impedance, as they both pure CBI modes

Possible cures

We are close to the threshold without margin

- Coupled-bunch feedback system?
- 2nd harmonic RF system \rightarrow increase LLD threshold and CBI threshold
- Synchrotron frequency variation due to Bunchby-bunch parameter variation (bad for luminosity, but unavoidable) and transient beam loading can help to suppress LLD type instability

MELODY was extended to treat individual bunches using a single matrix (dimensions depend on number of bunches)

 \rightarrow Some reduction of growth rates is observed for a toy model (9 bunches)

1*.*0 HOM only $HOM + BB$ 0*.*8 *±*10% in intensity (S^{-1}) Growth rate (s 0*.*6 Growth rate $0.4 -$ 0*.*2 $\begin{array}{c} 0.0 \\ 0.0 \end{array}$ 0*.*0 0*.*5 1*.*0 1*.*5 2*.*0 2*.*5 Particles per bunch $N_p \times 10^{11}$

Example for short bunches of \sim 0.8 ns

Possible cures

We are close to the threshold without margin

- Coupled-bunch feedback system?
- 2nd harmonic RF system \rightarrow increase LLD threshold and CBI threshold
- Synchrotron frequency variation due to Bunchby-bunch parameter variation (bad for luminosity, but unavoidable) and transient beam loading can help to suppress LLD type instability

MELODY was extended to treat individual bunches using a single matrix (dimensions depend on number of bunches)

 \rightarrow Some reduction of growth rates is observed for a toy model (9 bunches)

0*.*0 0*.*5 1*.*0 1*.*5 2*.*0 2*.*5 Particles per bunch $N_p \sim 10^{11}$ $0.0 + 0.0$ 0*.*2 $0.4 -$ 0*.*6 0*.*8 1*.*0 Growth rate (s Growth rate (s^{-1}) HOM only $HOM + BB$ *±*20% in intensity

Example for short bunches of \sim 0.8 ns

Summary

Loss of Landau damping was observed for short bunches injected into the LHC indicating that we are close to the threshold

Coupled-bunch instabilities due to HOMs were neither observed for nominal parameters, nor expected for HL-LHC (HOMs of CCs are at least ~3 below threshold)

The coupled-bunch instability threshold is decreased in the presence of broad-band inductive impedance and another type of instability is observed

Possible cure of this instability is a natural spread of bunch-by-bunch parameters or increase of the LLD threshold by using 2nd harmonic rf system

Thank you for your attention!

Spare slides

Longitudinal single-bunch stability

Bunch length shrinks during acceleration

 \rightarrow Controlled blow-up must be applied to keep beam stable

 $x = \tau_{\text{FWHM}}/2/\ln 2$ is scaled from full-width half-maximum (FWHM) bunch length

Single-bunch stability at 450 GeV

Results using MELODY for smoothed impedance (resistive wall + broad-band model at 5 GHz)

For LIU bunch from SPS (1.65 ns, 10MV@200MHz + 1.6 MV@800 MHz), bunch length in LHC (in absence of injection errors): 1.4 ns for 6 MV (LHC nominal 2017) 1.3 ns for 8 MV (HL-LHC design report)

Two voltages V_{rf} provide similar single-bunch stability

There are constrains due to injection losses and rf power consumption *(see talk of H. Timko)*

Persistent oscillations after injection

During 20 min oscillations lead to $~10$ % bunch lengthening and ~5% particle loss *(H. Timko et al., HB2018)* Similar oscillations were observed in Tevatron (*R. Moore, PAC2003*)

Persistent oscillations after injection

MELODY vs BLonD

Impact of bunch-by-bunch spread

Fist results with +-20 % intensity variation

Lebedev vs Sacherer approach

$$
V_{\text{rf}} = 16 \text{ MV}, \tau = 1.2 \text{ ns}, E = 7 \text{ TeV}
$$

 \rightarrow Factor of 4 difference is due to different distribution function.

 \rightarrow Stability diagram approach based on Lebedev equation was extended to binomial distribution.

 \rightarrow For $\mu = 2$, the minimum thresholds are similar, but Sacherer approach underestimates threshold at higher frequencies

 \rightarrow Sacherer approach can be obtained as a low frequency expansion of Lebedev equation (*E. Shaposhnikova et al., MCBI19*)

Results for HL-LHC flat top

$$
V_{\text{rf}} = 16 \text{ MV}, \tau = 1.2 \text{ ns}, E = 7 \text{ TeV}
$$

Crab cavity HOMs: HL-LHC Double Quarter Wave (DQW) × 4 HL-LHC RF-Dipole (RFD) × 4

 \rightarrow Thresholds for distributions with different μ and the same FWHM bunch length are similar (except $\mu = 1$)

 \rightarrow Only one HOM is close to the stability limit for the worst-case scenario without frequency spread between CC.

Results for HL-LHC flat bottom

 $E = 450$ GeV

Crab cavity HOMs: HL-LHC Double Quarter Wave (DQW) × 4 HL-LHC RF-Dipole (RFD) × 4

 \rightarrow Thresholds are similar for 6 MV and 8 MV of rf voltage for the same bunch parameters at the SPS extraction.

 \rightarrow Recommendation: further damping of the first high Q mode of DQW CC could be addressed for margin in machine operation.