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Longitudinal stability of multi-bunch beam: LHC

»  Evaluation of multi-bunch instability threshold _ Coupled-bunch instability LHC
using macro-particle simulations for = 3000 D —
bunches is computationally very expensive § 106y T ™\ Threshold

L
* Instead, it can be analytically calculated for one — 10°+
. - . = ]
narrow-band impedance (from stability diagrams 1; : Impedance
of Balbekov and Ivanov using Lebedev equation) & 10% <
@)
| S 10

* Coupled-bunch instabilities were not observed 5 :

so far, as expected for nominal LHC beams, % 102 | | |
= 0.0 0.5 1.0 1.5 2.0

contrary to the loss of Landau damping (LLD)

F GH
due to inductive impedance ImZ/k (k = f/f;,) requency (GHz)

E =450 GeV, V;=6 MV, 7=1.3ns



Longitudinal stability of multi-bunch beam: HL-LHC

_ Coupled-bunch instability HL-LHC

S
« For HL-LHC intensity, one higher order mode % 08 \\ _________________
(HOM) of DQW crab cavities (CC) is only by T 1 T \Threshold
factor of 2.7 below the CBI threshold. E 107 4 Impedance
S
s /
— The impact of loss of Landau damping (ImZ/k) L% 10*;
on the multi-bunch instability threshold can be 8
critical ; 103-E
S
= 102 . . .
= 0.0 0.5 1.0 1.5 2.0

Frequency (GHz)
E =450 GeV,V=8MV, 7=13ns



Loss of Landau damping in LHC
Single bunch

LLD threshold is (IK, TA, ES, PRAB 2021)

VrfT4

fe AIMZ /k) s

« Effective impedance (ImZ/k).¢ can be
computed for arbitrary impedance model

« Knowledge of effective cutoff frequency f. is
crucial

« Dependence on bunch length 7 in 4" power

Nth X

Results agree with semi analytical calculations
using code MELODY™

*Matrix Equations for LOngitudinal beam DYnamics

Particles per bunch N,

LLD threshold for in LHC
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E =450GeV, V. =6 MV, u =2,
(ImZ/k)eff =0.07 Q



Loss of Landau damping in LHC
Single bunch

LLD threshold in LHC for

LLD threshold is (IK, TA, ES, PRAB 2021) different distributions ()
x 1011
VrfT4 25 - - 0.04
Nth 04 B =05
fe (IMZ /K)ege = 204 ® p=10
S mu=15 a - 0.03
- Effective impedance (ImZ/k).¢ can be E 154 ® =20
computed for arbitrary impedance model = MELODY 009
« Knowledge of effective cutoff frequency f, is ; 1.0 - |
crucial 2 “ \
. Dependence on bunch length 7 in 4" power 2051 o - 001
Analytical formula

Results agree with semi analytical calculations — 00 ' 0.00
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. *
USIng COde MELODY Bunch length T4o (ns)= TEFWHMV 2/ In 2

: : Y , E =450 GeV,V =6 MV,
*Matrix Equations for LOngitudinal beam DYnamics (IMZ /k)oge = 0.07 Q, f. = 4 GHz
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HL-LHC impedance model and (ImZ/k) s

Model from May 2020 (N. Mounet) with broad-

band (BB) resonator impedance at f, = 5 GHz

Effective impedance
k¢
Dipeq GrrIm(Zy /k)

k
Qii—q Grr

1
Giae =5 = JEO) = J2) + 2288,y = mkfor

(ImZ/k)efs =

The maximum of nominator is reached at k. = f./f,
(S. Nese, 2021)

— For 40 bunch length of about 1.3 ns
(ImZ/k)eff ~ 0.075 Ohm, fc ~ 5.8 GHz

ImZ/k (Ohm)

400 MHz imp. + direct &
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Threshold reduction due to BBR impedance

MELODY has been extended to multi-bunch Coupled-bunch instability in HL-LHC
case (using extended Oide-Yokoya method) MOr—— o
HOM + BB
Results for broad-band (ImZ/k)egr ~ 0.075 @ + =~ U8
narrow-band (Rg,, = 4X71KkQ, f,, =582 MHz) 2
resonators 2 0.6-
= CBI threshold
~
— For this HOM, the CBI threshold is about & 47
~3 higher than HL-LHC intensity G 09 LLD threshold at ~2.9e11
— In the presence of BB impedance, the CBI 00 e |

threshold is reduced at ~ LLD threshold 0 9 4 6 3
Particles per bunch N, x10!!
E = 450GeV, V¢ = 8MV, u=2,74, = 1.3 ns



Types of coupled-bunch instability

It was expected that multi-turn or CB wake can make LLD mode unstable (Y.H. Chin, et al, 1982)

Mode structure BB + HOM, growth rate ~0.13 1/s Mode structure HOM only, growth rate ~0.13 1/s
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— In presence of broad-band impedance and small growth rate, unstable mode is localized in
bunch center (LLD type), which is different from the case of HOM alone



Types coupled-bunch instability

It was expected that multi-turn or CB wake can make LLD mode unstable (Y.H. Chin, et al, 1982)

Mode structure BB + HOM, growth rate ~0.4 1/s Mode structure HOM only, growth rate ~0.4 1/s
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— At significantly higher intensity, the most unstable modes look similar with and w/o BB
impedance, as they both pure CBI modes



Possible cures

We are close to the threshold without margin Example for short bunches of ~0.8 ns
« Coupled-bunch feedback system? 1.0 /
—#+— HOM only ;
« 2"d harmonic RF system — increase LLD HOM - BB
threshold and CBI threshold ~ 081 o £10% in intensity
« Synchrotron frequency variation due to Bunch- =
by-bunch parameter variation (bad for o 0.61
luminosity, but unavoidable) and transient S (
beam loading can help to suppress LLD type fs 0.4 1 .
instability S £
MELODY was extended to treat individual = 0.2 Pl
bunches using a single matrix (dimensions
depend on number of bunches) 00 > T TR

— Some reduction of growth rates is observed 0.0 0.5 1.0 1.5 2.0 2.5
for a toy model (9 bunches) Particles per bunch N, x 101
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Possible cures

We are close to the threshold without margin Example for short bunches of ~0.8 ns
» Coupled-bunch feedback system? 1.0 ]
—+— HOM only '
« 2"d harmonic RF system — increase LLD HOM - BB
threshold and CBI threshold 081 Lo0% in intensity
« Synchrotron frequency variation due to Bunch- =
by-bunch parameter variation (bad for © 0.67
luminosity, but unavoidable) and transient &
beam loading can help to suppress LLD type ﬁg 0.4 -
instability S
MELODY was extended to treat individual = 0.2
bunches using a single matrix (dimensions
depend on number of bunches) 0.0 e § k
— Some reduction of growth rates is observed 0.0 0.5 1.0 15 2.0 2.5

for a toy model (9 bunches) Particles per bunch N, x 10
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Summary

Loss of Landau damping was observed for short bunches injected into the
LHC indicating that we are close to the threshold

Coupled-bunch instabilities due to HOMs were neither observed for nominal

parameters, nor expected for HL-LHC (HOMs of CCs are at least ~3 below
threshold)

The coupled-bunch instability threshold is decreased in the presence of
broad-band inductive impedance and another type of instability is observed

Possible cure of this instability is a natural spread of bunch-by-bunch
parameters or increase of the LLD threshold by using 2" harmonic rf system



Thank you for your attention!
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Bunch length shrinks during acceleration

Longitudinal single-bunch stability

LHC Fill 6116, 23.08.2017

LHC Fill 6116, 23.08.2017
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Intensity (ppb)
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Single-bunch stability at 450 GeV

LHC, E = 450 GeV,u = 2

Results using MELODY for smoothed

Vit =8 MV
Vit =6 MV

impedance (resistive wall + broad-band model
at 5 GHz)

For LIU bunch from SPS (1.65 ns,
10MV@200MHz + 1.6 MV@800 MHz), bunch
—_length in LHC (in absence of injection errors):
1.4 ns for 6 MV (LHC nominal 2017)
1.3 ns for 8 MV (HL-LHC design report)

Two voltages V¢ provide similar single-bunch

stability

1.0

1.1 1.2 1.3 1.4
Bunch length (ns)

There are constrains due to injection losses and
rf power consumption (see talk of H. Timko)
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Persistent oscillations after injection

LHC MD 2017

DO
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Bunch profile (arb. units)
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Time [ns]

During 20 min oscillations lead to ~10 %
bunch lengthening and ~5% particle loss
(H. Timko et al., HB2018)

Similar oscillations were observed in
Tevatron (R. Moore, PAC2003)
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Intensity (ppb)
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Persistent oscillations after injection
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Bunch offset (deg.)

MELODY vs BLonD

Growth rate 7.5e-01 Q4
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Impact of bunch-by-bunch spread

Fist results with +-20 % intensity variation
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Lebedev vs Sacherer approach
V=16 MV,7=1.2ns,E =7 TeV
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— Factor of 4 difference is due to different
distribution function.

— Stability diagram approach based on
Lebedev equation was extended to binomial
distribution.

— For u = 2, the minimum thresholds are
similar, but Sacherer approach underestimates
threshold at higher frequencies

— Sacherer approach can be obtained as a
low frequency expansion of Lebedev equation
(E. Shaposhnikova et al., MCBI19)
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Results for HL-LHC flat top

Ve=16MV,T = 1.2ns,E = 7 TeV
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== u=25 2
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2.0

Crab cavity HOMs:

HL-LHC Double Quarter Wave (DQW) x 4
HL-LHC RF-Dipole (RFD) x 4

— Thresholds for distributions with

different u and the same FWHM bunch
length are similar (except u = 1)

— Only one HOM is close to the
stability limit for the worst-case

scenario without frequency spread
between CC.
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Results for HL-LHC flat bottom

E =450 GeV

——= pu=17=14ns, Viy=6 MV
uw=17=13ns, Vif =8 MV
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Crab cavity HOMs:

HL-LHC Double Quarter Wave (DQW) x 4
HL-LHC RF-Dipole (RFD) x 4

— Thresholds are similar for 6 MV
and 8 MV of rf voltage for the same
bunch parameters at the SPS
extraction.

— Recommendation: further damping
of the first high Q mode of DQW CC
could be addressed for margin in
machine operation.
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