

CernVM-FS: Status and Plans

Jakob Blomer (CERN)

CernVM Workshop 2022

Amsterdam, 12 September 2022

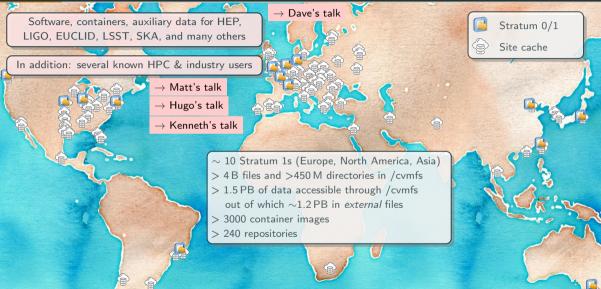
Agenda

State of Affairs

New Developments

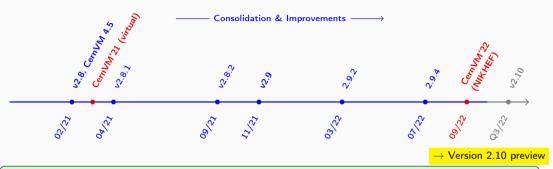
Container Support

Outlook and Plans


State of Affairs

At a Glance: CernVM-FS Deployment (Grid) \rightarrow Dave's talk Software, containers, auxiliary data for HEP, Stratum 0/1 LIGO, EUCLID, LSST, SKA, and many others Site cache

At a Glance: CernVM-FS Deployment (Grid) \rightarrow Dave's talk Software, containers, auxiliary data for HEP, Stratum 0/1 LIGO, EUCLID, LSST, SKA, and many others Site cache In addition: several known HPC & industry users \rightarrow Matt's talk \rightarrow Hugo's talk → Kenneth's talk


At a Glance: CernVM-FS Deployment (Grid)

Releases and Events

Highlights of the 2.9 and 2.10 releases

- Performance optimizations in the fuse client and in the S3 & gateway publishers
- Support for proxy sharding

- Support for container registry proxies
- Support for publishing from the ephemeral shell (experimental)

Platform Support

	EL 7	EL 8	EL 9 [†]	Ubuntu 16.04, 18	8.04 Ubuntu 20.	04 Ubunti	ı 22.04 [†]	Debian 8-10	Debian 11
×86_64	/	~	new	~	~	n	ew	V	new
AArch64	~	new	new	_	new	n	ew		
i686	_	_	_	~	_		_		
			SLES	12 SLES 15	macOS 11–12 [‡]	Container	WSL 2	-	
		×86_	_64	new	~	V	/	-	
		AArc	ch64	✓			_		

New platforms added as needed and as build and test hardware is available

- † Required code restructuring for OpenSSL 3
- ‡ Currently requires osxfuse 3rd party kernel extension • fuse-t looks like an interesting alternative. Apple silicon support through Rosetta, native builds still in the roadmap

CernVM-FS Components

Extras:

- cvmfsexec
- cvmfsservermon
- github-actioncvmfs
- cvmfs-x509helper
- repository monitor
- •

Stand-alone utilities

Preloader

Shrinkwrap

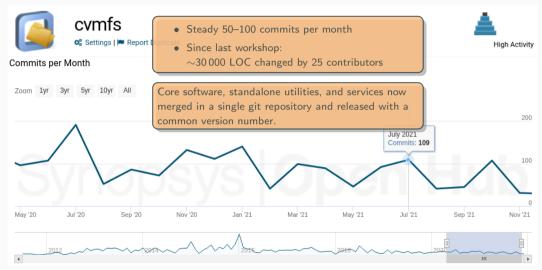
Services (Go)

containerd snapshotter (preproduction)

Container Publishing Tools

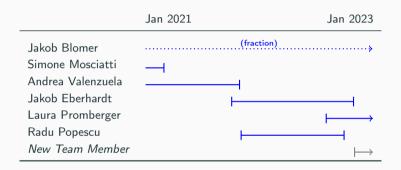
Gateway Services

Core Software

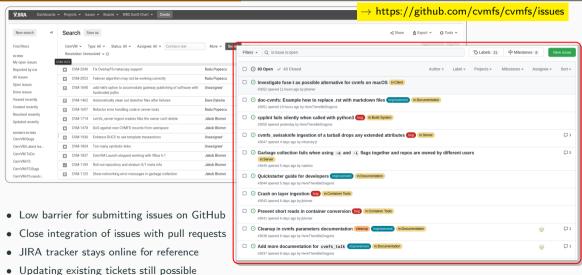

Client Fuse module, libcvmfs,

e module, libcvmfs, cache plugins Server publisher tools, libcvmfs_server,

Geo-API

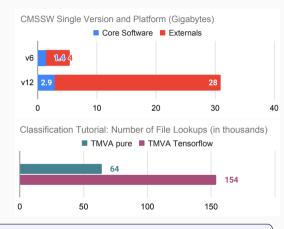

At a Glance: Code

Developer Team @ CERN



- Unforeseen departure of Radu to industry; new team member expected by the end of the year
- Laura started a 3 years contract huge thanks to Jump Trading for making that possible!

Issue Tracking: Moved to GitHub


New Developments

Software Management for HL-LHC

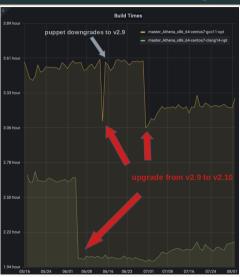
Compared to LHC Run 1-2 (2011-2018), we now find

- Multiple target architectures: AArch64, x86_64 micro-architectures (e.g. AVX512), IBM Power, GPUs
- A growing Python software ecosystem, in particular for machine learning tasks
- More agile software development: automated integration builds, nightly builds
- Many more cores per box
- Deployment with containers

My estimate: the software distribution problem for HL-LHC grows by a factor of 3-5 for most key metrics.

ightarrow We should invest in the CernVM-FS performance, scalability, and correctness of edge cases

Improved Page Cache Management in the Fuse Client

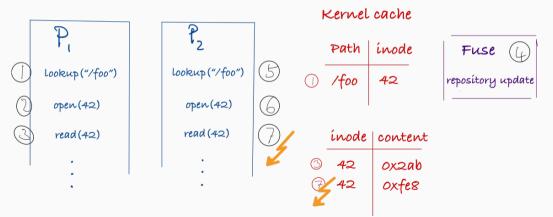

Problem

Bad CPU utilization when building ATLAS Athena on 64+ core nodes; compiler loaded from CernVM-FS.

Caused by very limited used of kernel page cache for data by the fuse client <2.10.

Key issue addressed in version 2.10 is purging of the caches when the file content changes.

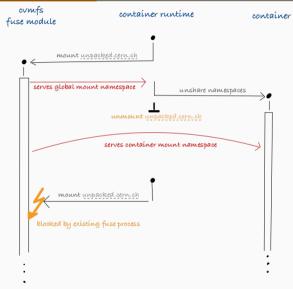
 \rightarrow 10 % to 30 % faster Athena builds


Johannes Elmsheuser (ATLAS)

Fixed Handling of Open, Changing Files

Fixed in version 2.10

A file that is concurrently read in two different version can return corrupted content – surprisingly only recently triggered by Compute Canada and EESSI



Fixed Zombie Mountpoints

Fixed in version 2.9 + Kernel 5.15 (EL 9.1)

- Depending on the container engine (use of unshare), mounting a repository could hang
- Fixed by allowing new mounts to attach to existing fuse module
- Got us a mention on phoronix

Next Steps

Evaluate proxy sharding

available in version 2.10

• Should reduce cold cache latency with multiple proxies

Kernel caching of symlink resolution

- Challenge: preserve cache consistency across file system updates
- Requires patching fuse, currently being tested

Improve cold cache performance on many-core nodes Network Decompression Process out of Waiting Waiting blocked state PO P0 P1 Pn PO Ρ1 P1 Concurrent download streams are stalled by serialized decompression Pn Pn

Container Support

CernVM-FS as a Container Hub

/cvmfs/unpacked.cern.ch

- > 2200 images
- > 10 TB
- > 250 M files

/cvmfs/singularity.opensciencegrid.org

- > 900 images
- > 3.5 TB
- > 75 M files

Images are readily available to run with apptainer (singularity), including base operating systems, experiment software stacks, explorative tools (ML etc.), user analyses, and special-purpose containers such as folding@home

```
$ /cvmfs/oasis.opensciencegrid.org/mis/apptainer/current/bin/apptainer \
   exec '/cvmfs/unpacked.cern.ch/registry.hub.docker.com/library/debian:stable' \
   cat /etc/issue
Debian GNU/Linux 11 \n \l
```

CernVM-FS as a Container Hub

/cvmfs/unpacked.cern.ch

- > 2200 images
- > 10 TB
- > 250 M files

/cvmfs/singularity.opensciencegrid.org

- > 900 images
- > 3.5 TB
- > 75 M files

 $> 2 \times$ growth since 2021 workshop

Images are readily available to run with apptainer (singularity), including base operating systems, experiment software stacks, explorative tools (ML etc.), user analyses, and special-purpose containers such as folding@home

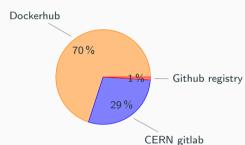
```
$ /cvmfs/oasis.opensciencegrid.org/mis/apptainer/current/bin/apptainer \
  exec '/cvmfs/unpacked.cern.ch/registry.hub.docker.com/library/debian:stable' \
  cat /etc/issue
Debian GNU/Linux 11 \n \l
```

Container Runtime Integration

	Runtime	CernVM-FS Support							
	Apptainer	native							
	podman	native / pre-production (use image storage from /cvmfs)							
	containerd / k8s	plugin / pre-production (through cvmfs snapshotter)	$\to Kohei's\;talk$						
	docker	<i>"graph driver"</i> image storage plugin – deprecated ¹							
	through containerd in the future								
Documentation chapter on containers & CernVM-FS:									
ightarrow https://cvmfs.readthedocs.io/en/latest/cpt-containers.html									

¹ Soon replaced by containerd Docker's announcement

unpacked.cern.ch



- Image wishlists on CERN GitLab and GitHub
- Editable by merge/pull request

```
version: 1
user: cvmfsunpacker
cvmfs_repo: 'unpacked.cern.ch'
output_format: >
    https://gitlab-registry.cern.ch/unpacked/sync/$(image)
input:
    - 'https://gitlab-registry.cern.ch/sft/docker/ubuntu20:latest'
    - 'https://registry.hub.docker.com/library/centos:*'
    ...
```

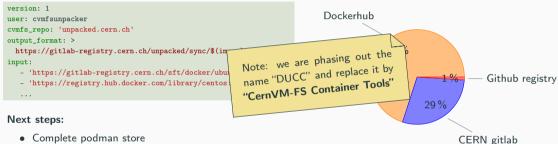
Next steps:

- Complete podman store
- Multi-arch image support
- Release webhook integration with Harbor

Origin of images on unpacked.cern.ch

new

Images from Docker Hub and GitHub are proxied through registry.cern.ch

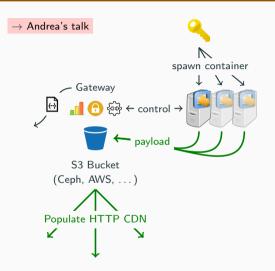

ightarrow Ricardo's talk

unpacked.cern.ch

- Image wishlists on CERN GitLab and GitHub
- Editable by merge/pull request

Origin of images on unpacked.cern.ch

- Complete podman store
- Multi-arch image support
- Release webhook integration with Harbor


Images from Docker Hub and GitHub are proxied through registry.cern.ch

→ Ricardo's talk

Outlook and Plans

Progress towards Containerized Publishing

Goal for Final Setup

- On-demand publish container
- Gateway services:
 - Provides API for publishing
 - Issues **leases** for sub paths
 - Updates repository statistics
- All components deployable on k8s

Component Status

S3 backend production

Gateway service robust, with known issues

Publish container prototype

Links

Source code https://github.com/cvmfs/cvmfs

Documentation https://cvmfs.readthedocs.io

Support forum https://cernvm-forum.cern.ch

Mattermost https://mattermost.web.cern.ch/cernvm

Bug tracker https://github.com/cvmfs/cvmfs/issues new

Package repositories https://cvmrepo.s3.cern.ch/

Summary & Next Milestones

Goal: prepare CernVM-FS for software distribution at HL-LHC

- 1. Continued client-side performance engineering
- 2. Two main publisher workflows
 - guarded by software & dataset librarians
 - container ingestion open to a broader community
- 3. Address missing functionality in the gateway to make it work together with the container tools
- 4. Container integration with containerd/k8s and podman: releases of pre-production code, documentation, packaging (e.g. helm charts)
- 5. Balance new developments with maintenance (platforms, code infrastructure, \dots)

Summary & Next Milestones

Goal: prepare CernVM-FS for software distribution at HL-LHC

- 1. Continued client-side performance engineering
- 2. Two main publisher workflows
 - guarded by software & dataset librarians
 - container ingestion open to a broader community
- 3. Address missing functionality in the gateway to make it work together with the container tools
- 4. Container integration with containerd/k8s and podman: releases of pre-production code, documentation, packaging (e.g. helm charts)
- 5. Balance new developments with maintenance (platforms, code infrastructure, ...)

Backup Slides

Next-Generation Server Code

Legacy Code

A set of tools targeted for a dedicated release manager machine, and the interactive workflow open transaction + copy + commit

New Architecture

CLI GW receiver REST API ...

libcvmfs_server
commit changeset, GC, tag management, ...

PUT/GET storage abstraction

A common base library providing repository transformation primitives, on top of which higher-level publish abstractions can be built

Initial CLI commands ported to libcvmfs_server: info, diff, transaction, enter.

Foundation for new functionality and workflows, e.g. template transactions, ephemeral writable shell

Container Conversion Service

Wishlist https://gitlab.cern.ch/unpacked/sync

version: 1

```
user: cvmfsunpacker
cvmfs_repo: 'unpacked.cern.ch'
output_format: >
  https://gitlab-registry.cern.ch/unpacked/sync/$(image)
input:
  - 'https://registry.hub.docker.com/library/fedora:latest'
  - 'https://registry.hub.docker.com/library/debian:stable'
  - 'https://registry.hub.docker.com/library/centos:*'
```

Multiple wishlists possible, e.g. experiment specific

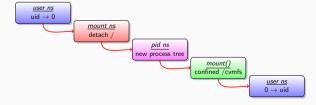
/cvmfs/unpacked.cern.ch

```
# Singularity
/registry.hub.docker.com/fedora:latest -> \
   /cvmfs/unpacked.cern.ch/.flat/d0/d0932...
# containerd, k8s, podman
/.layers/f0/1af7...
```

Simple Case: CernVM-FS Available on the Host

```
$ docker run -v /cvmfs:/cvmfs:shared busybox ls /cvmfs/sft.cern.ch
README.md lcg
```

```
$ singularity exec -B /cvmfs docker://busybox ls /cvmfs/sft.cern.ch
README.md lcg
```

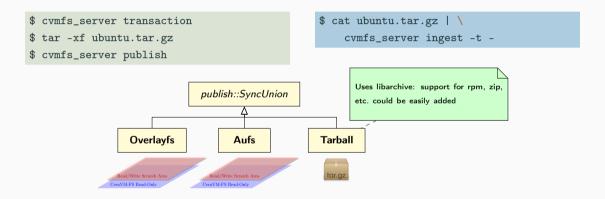

Important: use *shared* bind mount with docker so that that repositories can be mounted on demand from inside the container

Unprivileged Mounting with cvmfsexec

\$ cvmfsexec grid.cern.ch atlas.cern.ch -- ls /cvmfs
atlas.cern.ch cvmfs-config.cern.ch grid.cern.ch

Technical foundations

- User namespaces completing container support
- As of Linux kernel version 4.18 (EL8, but also EL 7.8), fuse mounts are unprivileged in user name spaces
- Overlay-FS implementation available as a fuse module


For HPCs: Pre-mounted by Singularity

- With the new Fuse3 libraries, mounting can be handed off to a trusted, external helper.
- Fuse3 libraries have been backported to EL6 and EL7 platforms.
- Gives access to /cvmfs in containers started by singularity (singularity --fusemount)
- Required cvmfs client to be installed and prepared in the container

```
$ CONFIGREPO=config-osg.opensciencegrid.org
$ mkdir -p $HOME/cvmfs_cache
$ singularity exec -S /var/run/cvmfs -B $HOME/cvmfs_cache:/var/lib/cvmfs \
    --fusemount "container:cvmfs2 $CONFIGREPO /cvmfs/$CONFIGREPO" \
    --fusemount "container:cvmfs2 sft.cern.ch /cvmfs/sft.cern.ch" \
    docker://davedykstra/cvmfs-fuse3 ls /cvmfs/sft.cern.ch
README.md lcg
```

Enabling Feature for Container Publishing: Tarball Ingestion

Direct path for the common pattern of publishing tarball contents

Performance Example

Ubuntu 18.04 container – 4 GB in 250 k files: 56 s untar + 1 min publish vs. 74s ingest

Notification Service

Fast distribution channel for repository manifest: useful for CI pipelines, data QA

- Optional service supporting a regular repository
- Publish/subscribe utility in cvmfs_swissknife
- Subscribe component integrated with the client, automatic reload on changes
- ightarrow CernVM-FS writing remains asynchronous but with fast response time in $\mathcal{O}(\text{seconds})$