CernVM 5 github.com/cernvm/cernvm-five

CernVM Appliance

• Virtual Appliance for CernVM-FS

\rightarrow A minimal yet complete run time environment for scientific software

- Version 3&4:
 - Minimal Linux kernel + μCernVM bootloader
 - CernVM-FS mounted during boot process; system loaded on-demand
 - Volume of ~ 20MB, but designed for full virtualization
 - Interactive contextualization through CernVM Online

Development of CernVM (until the end of 2022)

- Release of CernVM 5
- CernVM 3&4 remain available for long-term data preservation use cases
- Phase out CernVM Online

 \rightarrow Instead: Interactive contextualization through pre-contextualized OVA images

Problem of CernVM ≤ 4: Limited usability as a container

- Operators are shifting infrastructure towards containerized environments
 - Smaller images
 - Easier to distribute / retain
 - Less performance overhead
 - Easier and faster to deploy
 - Powerful orchestration tools (e. g. Kubernetes)

CernVM 5

- Standard "just-enough" container
- Still a complete platform to **develop** and **run** HEP applications
- \rightarrow But: Focus on container virtualization
- Minimal: Contents defined by CernVM-FS and common HEP base libraries
- Facilitates the mounting of /cvmfs in various environments
- Equally practical as a container and full virtual machine
 →Running in different container run times and hypervisors

CernVM 5: Goals

- Building a container image for a variety of applications, rather than one binary →And keeping it minimal
- Mounting CernVM-FS inside a container
 - \rightarrow Mounting a file system usually requires elevated privileges
 - \rightarrow Privileges by default not available in containerized environments
- Stable usability in the presence of multiple versions of shared libraries
 →While not interfering with scientific stacks setups
 →But built from stock packages
- Graphical user interface
 - \rightarrow Despite the focus on container virtualization
 - \rightarrow Without host prerequisites
- CernVM-FS cache management

 \rightarrow Reducing start latency by building images with pre-loaded cache

CernVM 5: Goals

- Building a container image for a variety of applications, rather than one binary →And keeping it minimal
- Mounting CernVM-FS inside a container
 - \rightarrow Mounting a file system usually requires elevated privileges
 - \rightarrow Privileges by default not available in containerized environments
- Stable usability in the presence of multiple versions of shared libraries
 →While not interfering with scientific stacks setups
 →But built from stock packages
- Graphical user interface
 - ightarrow Despite the focus on container virtualization
 - \rightarrow Without host prerequisites
- CernVM-FS cache management

ightarrowReducing start latency by building images with pre-loaded cache

CernVM 5: Design

- Base Layer Image
 - CernVM-FS client
 - HEP base libraries
 - dnf package manager
- ightarrow The actual image, smallest unit
- System Applications
 - CernVM 5 system specific
 - Interactive applications
- \rightarrow What users expect on top
- Scientific Software Stacks
 - E. g. analysis frameworks
 - Set up using environment variables
- \rightarrow Externally managed

CernVM 5: Image Build Process

- Custom multi-stage build process
 - 1.) Set up intermediate build container
 - 2.) Construct CernVM 5 root file system in build directory
 - → Defined in **cernvm-system-default** package (HEP libraries, CernVM-FS, configuration files)
 - 3.) and 4.) Export build directory to standalone image

Idea: Outsource system applications to CernVM-FS

- + Smaller image size
- + General advantages of CernVM-FS like e.g., lazy loading
- + Versioned by CernVM-FS

Subsystem-like installation

+ Easily extendable using standard package managers

System Applications Repository on CernVM-FS [vim, nano, emacs, findutils, patchelf, ping, wget, strace, tree, diff, ...]

CernVM 5: Resulting Base Layer Image

	CernVM 5 Base Layer Image	Naively Derived Image	Naively Derived Image + System Applications
Volume (uncompressed)	805MB	1030MB	1450MB
Volume (compressed)	284MB	382MB	523MB
Installed Packages	457	502	612
Image Layers	single	multiple	multiple
Standard Derivability	yes	yes (but not a true base layer)	yes (but not a true base layer)

+ Better control over installed packages \rightarrow smaller image, easier to distribute

- + Improved build time and caching
- + Single layered \rightarrow less complex, faster to construct, true to concept of base layers
- + Compared to ≤ 4: Derivable image

CernVM 5: Goals

- Building a container image for a variety of applications, rather than one binary →And keeping it minimal
- Mounting CernVM-FS inside a container
 - \rightarrow Mounting a file system usually requires elevated privileges
 - \rightarrow Privileges by default not available in containerized environments
- Stable usability in the presence of multiple versions of shared libraries
 →While not interfering with scientific stacks setups
 →But built from stock packages
- Graphical user interface
 - ightarrow Despite the focus on container virtualization
 - \rightarrow Without host prerequisites
- CernVM-FS cache management

 \rightarrow Reducing start latency by building images with pre-loaded cache

CernVM 5: Mounting CernVM-FS

mounts to

CernVM 5: Deployment

	Docker	Apptainer	Podman	Kubernetes	containerd
Bind mount CernVM-FS -v /cvmfs:/cvmfs:ro					
Mount CernVM-FS insde device /dev/fuse cap-add SYS_ADMIN					
Pre-mounted			×		×
Host integration /workspace → as a shared folder /data → physics data					

CernVM 5: Distribution

Pushed to registry

 Docker-compliant Registry

 \rightarrow End users

CernVM-FS

 \rightarrow Large scale distribution

As a VM

- CERN OpenStack
- \rightarrow Isolation use cases
- \rightarrow Cloud infrastructure
- → Data acquisition systems

\$ docker pull registry.cern.ch/cernvm/five/cernvm-five:latest \$ apptainer shell /cvmfs/unpacked.cern.ch/registry.cern.ch/cernvm/five/cernvm-five\:latest \$ openstack server create --image 'CernVM 5.1.2 – x86_64'

CernVM 5: Goals

- Building a container image for a variety of applications, rather than one binary →And keeping it minimal
- Mounting CernVM-FS inside a container
 - \rightarrow Mounting a file system usually requires elevated privileges
 - \rightarrow Privileges by default not available in containerized environments
- Stable usability in the presence of multiple versions of shared libraries
 While not interfering with scientific stacks setups
 But built from stock packages
- Graphical user interface
 - ightarrow Despite the focus on container virtualization
 - \rightarrow Without host prerequisites
- CernVM-FS cache management

ightarrowReducing start latency by building images with pre-loaded cache

Problem: Presence of multiple versions of shared libraries

bash-4.4# which nano /cvmfs/cernvm-five.cern.ch/x86_64/1.0a/usr/bin/nano bash-4.4# source /cvmfs/sw.hsf.org/spackages4/key4hep-stack/release-2021-10-29-ip7764o/x86_64-centos8-gcc8.4.1-opt/setup.sh bash-4.4# nano Segmentation fault (core dumped)

• Problem: Stack setup scripts overwrite local default values

 \rightarrow Locally and remotely installed executables break when linked with mismatching shared library

Dynamically Linked Executables

- Dynamically linked ELF executables
 - Use shared libraries installed on a system
 - Linked with dependencies during run time using a linker, e.g., ld
- Possible solutions
 - Static linking
 - \rightarrow Increases image size
 - rpath at compile-time
 - → Requires custom packages / maintenance

→ Standard packages with post-build rpath processing

Standard Packages with Post-Build rpath

bash-5.1# cernvm-patch-rpath -h Adds DL_RPATH to ELF executables using patchELF cernvm-patch-rpath [-r <installation root (by default '/')> -l <location of shared libraries (by default '/lib64:/lib' resp. '/lib')>

- cernvm-patch-rpath:
 - 1.) Determine installed executables
 - 2.) Evaluate executable and original location of dependencies
 - \rightarrow E. g., /lib64 for a locally installed 64-bit, dynamically linked ELF executable
 - 3.) Set up DT_RPATH binary header accordingly

Pros:

- + Fast, repeatable
- + Isolated from LD_LIBRARY_PATH
- + Integrated in build chain
- + Can be used by users in their builds (RUN cernvm-patch-rpath)
- + Allows use of standard packages

Example: CernVM 5 executable with postbuild applied rpath

bash-5.1# patchelf --print-rpath /cvmfs/cernvm-five.cern.ch/x86_64/1.2/usr/bin/nano
/cvmfs/cernvm-five.cern.ch/x86_64/1.2/lib64:/cvmfs/cernvm-five.cern.ch/x86_64/1.2/lib

bash-5.1# which nano /cvmfs/cernvm-five.cern.ch/x86_64/1.2/usr/bin/nano bash-5.1# source /cvmfs/sw.hsf.org/spackages4/key4hep-stack/release-2021-10-29-ip7764o/x86_64-centos8-gcc8.4.1-opt/setup.sh bash-5.1# nano bash-5.1# echo \$?

bash-5.1# ldd \$(which nano)
 linux-vdso.so.1 (0x00007ffd7abea000)
 libmagic.so.1 => /cvmfs/cernvm-five.cern.ch/x86_64/1.2/lib64/libmagic.so.1 (0x00007fd7f1f1d000)
 libncursesw.so.6 => /cvmfs/cernvm-five.cern.ch/x86_64/1.2/lib64/libncursesw.so.6 (0x00007fd7f1eda000)
 libtinfo.so.6 => /cvmfs/cernvm-five.cern.ch/x86 64/1.2/lib64/libtinfo.so.6 (0x00007fd7f1eda000)

Add rpath to executables
RUN cernvm-patch-rpath -r \${BUILD_DIR}

bash-5.1# patchelf --print-rpath /usr/bin/ls
/lib64:/lib

CernVM 5: Goals

- Building a container image for a variety of applications, rather than one binary →And keeping it minimal
- Mounting CernVM-FS inside a container

 \rightarrow Mounting a file system usually requires elevated privileges

 \rightarrow Privileges by default not available in containerized environments

- Stable usability in the presence of multiple versions of shared libraries
 →While not interfering with scientific stacks setups
 - \rightarrow But built from stock packages
- Graphical user interface

 \rightarrow Despite the focus on container virtualization

- \rightarrow Without host prerequisites
- CernVM-FS cache management

ightarrowReducing start latency by building images with pre-loaded cache

CernVM 5: Graphical User Interface

- Graphical applications in containers
 - Clumsy
 - Too large
 - Tedious to configure
 - Host prerequisites
- Web-based Jupyter Notebooks
 - Loaded from CernVM-FS
 - Hosted locally (EXPOSE 8888)

ROOT	ROOT_Notebook Last Checkpoint: a few seconds ago (autosaved)	√ Log	out Terminal				
File Edit	View Insert Cell Kernel Help	Trusted	ROOT C++ O				
B + % 4	▲ ↓ H Run ■ C → Code → ■						
In [1]:	TCanvas *c = new TCanvas;						
In [2]:	TH1F *h = new TH1F("gaus", "gaus", 100, -5, 5);						
In [3]:	h->FillRandom("gaus", 10000);						
In [4]:	h->Draw();						
In [5]:	<pre>c->Update();</pre>						
In [6]:	: gSystem->ProcessEvents();						
In [7]:	<pre>TImage *img = TImage::Create();</pre>						
In [8]:	<pre>img->FromPad(c);</pre>						
In [9]:	<pre>img->WriteImage("workspace/canvas.png");</pre>						
In [10]:	delete h;						
In [11]:	delete c;						
In [12]:	delete img;						

CernVM 5: Goals

- Building a container image for a variety of applications, rather than one binary →And keeping it minimal
- Mounting CernVM-FS inside a container

 \rightarrow Mounting a file system usually requires elevated privileges

 \rightarrow Privileges by default not available in containerized environments

- Stable usability in the presence of multiple versions of shared libraries
 →While not interfering with scientific stacks setups
 →But built from stock packages
- Graphical user interface

 \rightarrow Despite the focus on container virtualization

- \rightarrow Without host prerequisites
- CernVM-FS cache management

 \rightarrow Reducing start latency by building images with pre-loaded cache

Cache Pre-Loading – An Example

- Scenario / Workflow mapped in a script / testsuite
- Example FCC Starterkit tutorial

Speed Up (Inside CERN Network)

Command	CernVM 5 Base Image	CernVM 5 FCC Starterkit	Rounded Speed Up Factor
KKMCee -h	1.609s	0.357s	4.5x
BHLUMI -h	1.569s	0.055s	28.0x
whizard Z_mumu.sin	50.233s	18.971s	2.6x
babayaga -h	1.635s	0.487s	3.4x
babayaga -f 1	5.541s	5.289s	1.05x
Import ROOT	6.843s	1.544s	4.4x
fccanalysis run ²	11.230s	9.319s	1.2x

1 babayaga -f 15. -t 165. -e 91.2 -n 10000 -o bbyg_10000.LHE

2 fccanalysis run analysis_stage1.py --output p8_ee_ZH_ecm240.root --files-list ./p8_ee_ZH_ecm240_edm4hep.root http://ecsft.cern.ch/dist/cernvm/five/vm/tutorials/cernvm-five-fcc-x86_64.qcow2.tar.gz

CernVM 5: Full Virtual Machine

- Build on top of any CernVM 5 container image / stopped container ٠
 - Adding Kernel-enabled file system layer to CernVM base image

CernVM 5: Virtual Machine

- Available as raw and qcow2 image e.g. for QEMU/KVM or VirtualBox
- Available on CERN OpenStack within the project (soon public)
 - Fully integrated contextualization process
- Build in an automated manner; in line with the container build process
 - Every existing CernVM 5 container image and container extendable to full VM

CernVM5-0 [Running] - Oracle VM VirtualBox	×	CernVM5-1 on QEMU/KVM ×					×		
File Machine View Input Devices Help	File	Virtual Mach	nine View Send	Kev					
bash-4.4# which tree	^ n==								
/cumfs/cernum-flue.cern.ch/x8b_b4-rocky8/usr/bln/tree hash_4_4#_tree_T_1_/cumfs/	I It	Calls	Integral[fb]	Error[fh]	Err[2]	Acc	Eff[%]	Chi2 M	ITt1
		=======================================	=======================================	============	=========	========	=======	========	======
I cernum-five.cern.ch	1	1000	1.5048458E+06	5.06E+04	3.36	1.06×	22.24		
I cumfs-config.cern.ch	2	999	1.5072490E+06	1.82E+04	1.21	0.38×	41.45		
I fcc.cern.ch	3	998	1.5051831E+06	1.10E+04	0.73	0.23×	52.57		
I grid.cern.ch	I								I
I st cem ch	3	2997	1.5057045E+06	9.23E+03	0.61	0.34	52.57	0.00	3
I sw-nightlies.hsf.org	I								I
I sw.hsf.org	4	9999	1.5153790E+06	3.89E+03	0.26	0.26	12.13		
` unpacked.cern.ch		9999	1.5098341E+06	3.82E+03	0.25	0.25*	9.66		
	. 6	9999	1.5103967E+06	3.63E+03	0.24	0.24×	9.66		
Jairectories, V files	I		4 E44304EE -00	2 405.02					
Jash-1.1#		29997	1.5117815Ľ+V6 	2.18E+U3	U.14	0.25	9.66	0.63	J
4	▼ ===	me estimate	fon generating	 10000 euen	===== ts: 0d:00	===== h:00m:02	==== >		
🔽 💿 🐚 🖶 🖄 🚫 💽 Right Ctr	i <u></u> n_eu	ents = 10000	0	10000 E0EII		n.00m.02	.5		

Jakob Eberhardt - CVMFS Workshop - 12th September, 2022

CernVM 5: Adoption

- Key4hep project
- \rightarrow As a build environment for future stacks
- CERN's web-based analysis service SWAN
- \rightarrow As the underlying runtime environment

CernVM 5: Conclusion

- Standard container image capable of serving arbitrary stacks as a run time environment
- Built in a custom process using standard packages
- Processing of dynamically linked executables with DT_RPATH
- Natively derivable
- Integrated and tested FUSE interface for mounting CernVM-FS inside a container running in various container runtimes
- Extendable to a full virtual machine
- Proof-of-concept for pre-loading CernVM-FS caches

Questions?