

Exascale data processing with CVMFS

12 September 2022

Matt Harvey

HPC Production Engineer

JUMP TRADING

- Privately-owned proprietary trading firm, established 1999
- Focus on algorithmic and high-frequency trading
 - Futures, options, equities, etc
- Significant investments in crypto infrastructure
- World-wide operations
 - 14 offices across US, EU, Asia, Pacific
- ~700 employees

HPC at Jump

Jump's Research Environment (HPC / "The Grid")

- The platform where we develop and optimize trading strategies
- Technologically competitive with some of the largest publicly known research systems in the world
- Thousands of servers
- Hundreds of petabytes of storage
- Fast network interconnects
- Sophisticated data-intensive and compute-intensive research workflows
- Keeps growing: more hardware every year

Fabric logical diagram Image Credit: Olli-Pekka Lehto

DATA INTENSIVE

- Capture large volumes of market data, globally
- Daily processing to produce data products for quants
- Trading teams use it to regularly refit models
- Researchers use it to develop new strategies
- Typically large map-reduce workflows

Archive Growth History

Ten Years of Archive Growth

Archive Data Added Per Week

Description	Size
Total Bytes captured in 2020	9.75 PiB
Minimum Bytes captured per week in 2020	138.7 TiB
Maximum Bytes captured per week in 2020	441.9 TiB
Annual growth rate	1.5-2x prior year

Archive Infrastructure 2015

- A single large HPC system
- Lots of spinning disks
- GPFS filesystem

Then it grew...

..and lots of cold data living on disk..

The Legacy Archive

The Legacy Archive was an obstacle to growth.

- Paying for hard drives for data we never access (e.g., second copies)
- Very difficult to handle HPC pods scaling choices are multihoming or more rsyncs.
 Neither are scalable.
- Massive rsyncs hard to manage
- Complex symlink and mount management to present 4+ GPFS/NFS filesystems as "/jump/archive"
- Hard to provide archive access in "non-grid" areas (e.g., dev hosts and hosts with experimental hardware)
- Hard to add new datasets: more hard drives, servers, and rsyncs
- GPFS is not the ideal place to store zero-bitrot data for decades

A New Design: Tiered Archive

- Able to run existing work-loads unmodified
 - POSIX FS presentation
- Decoupled from HPC fabric / filesystems
 - Accessible outside of HPC environment
- Able to accommodate >10x growth in size
 - Horizontally and vertically
- Non-requirements:
 - Read-write mounts on compute nodes
 - Concurrent writes on the same file
 - Fabric-wide consistency and file locking (unnecessary complexity and slowness)

The Tiered Archive

Three puzzle pieces:

1. Read Path: Cloud storage backed by many layers of cache

2. Filesystem presentation: POSIX-like to allow existing apps to keep working

3. Write Path: Pipeline to add new data to the system at scale

Tiered Archive: CVMFS

Accessing Data Federations with CVMFS

Derek Weitzel¹, Brian Bockelman¹, Dave Dykstra², Jakob Blomer³, Ren Meusel³

E-mail: dweitzel@cse.unl.edu

Abstract. Data federations have become an increasingly common tool for large collaboration such as CMS and Atlas to efficiently distribute large data files. Unfortunately, these typicall

¹ University of Nebraska - Lincoln Holland Computing Center, US

² Fermilab, Batavia, IL, US

³ CERN, Geneva, CH

Write path details

Weitzel et. al approach:

- CVMFS config tweaks to improve write scalability
- CVMFS "grafting" to separate data and metadata write paths
 - Data is uploaded directly to cloud storage
 - Metadata commits are batched together via CVMFS publishers and gateway
- "...more work is needed to be able to generate the graft files in a distributed manner". We took on this task.

Archive Write Path

 Workflow pipeline manages publication

- Uploader
 - Upload objects
 - Create graft files
- Grafter
 - Process graft batches
 - Automate CVMFS transactions
 - Fleet of CVMFS publisher containers
- Staging Area (NFS) exported from VAST appliance
 - Scratch space for data generation
 - "just in time" data access

Archive Read Path

2xPOPs each with 2x100G

100G leaf/spine Ethernet network

HDR (1 or 200G IB) fabric

CVMFS FUSE mount

Unmodified application

Google Cloud Storage

~5PB VAST S3 Appliance Mix of 3D XPoint (fast) and QLC (slow/economical)

Cache/Gateway box

- Many NICs IB/Eth
- ~40T SSD
- Standard Linux
- Varnish Plus

Designed for the next 10 years

Can scale by orders of magnitude:

Network links from a colo to cloud

Storage PB

Performance

Summary

- Moving to object store + caching allows us to scale in all directions for many years
- Using CVMFS to convert a POSIX read path into object store allowed us to keep our existing infra
- Well proven open source software like Varnish and commodity servers allows us to scale to hundreds of gigabytes per second IO

Sound like fun? Jump is hiring.

