
System architecture GRID processing feedback

ALICE Build Infrastructure
CernVMWorkshop, Nikhef

Timo Wilken

12 September 2022



System architecture GRID processing feedback

Architecture overview

▶ previously: Mesos + Aurora
▶ Nomad for job scheduling

▶ long-running jobs: custom continuous integration
builders, Jenkins builders

▶ small web services: user account administration,
tarball servers

▶ cron jobs: software repository maintenance/cleanup
▶ Consul

▶ job discovery: *.service.consul DNS
▶ Traefik auto-config for web access
▶ job monitoring: simple health checks

▶ Vault stores secrets, using Consul as backend
▶ Prometheus metrics of the whole cluster monitored

and visualised using Grafana
CERN MONIT

Vault Nomad
secrets

Consul

service
declarations

Prometheus

storage

Traefik

auto-
config

request
routing

Cortex

long-term storage

Grafana

visualisation
& alerting

2 of 10



System architecture GRID processing feedback

Web services: health checks & Traefik autoconfig

3 of 10



System architecture GRID processing feedback

Rough edges

1. Nomad’s handling of disk space allocation
▶ restarting daemon with non-empty disk confuses Nomad’s accounting
▶ can cause scheduling issues much further down the line
▶ must manually clean up the node and restart the Nomad agent process

2. integration with CERN SSO
▶ rely on Nomad/Consul/Vault tokens for authentication
▶ could integrate SSO with Vault, which would then issue Nomad/Consul tokens
▶ client certificate authentication is supported, so we use that in addition to tokens

4 of 10



System architecture GRID processing feedback

Software publishing

$ aliBuild build \
--remote-store ...

tarball repository
CERN S3, rsync server, ...

upload using boto3/rsync/...

aliPublish

CVMFS
(CentOS 6/7)

Grid
(CentOS 7/8)

RPMs on CERN S3
(CentOS 7/8)

aliPublishS3

re-use tarballs

HTTP boto3

5 of 10



System architecture GRID processing feedback

GRID processing at ALICE (adapted from S. Wenzel)

▶ micro-services (processes) transform streaming data
▶ offline/GRID: limited memory (2 GB/core)

▶ cannot have all services up at the same time
▶ need a runtime for scheduling and consecutive steering of

processing stages
▶ runtime based on a directed acyclic graph

▶ processes started when input + resources available
▶ data communicated via intermediate files

▶ multi-core ready: multiple parallel processes + internal
multithreading; parallel in stages (sim, reco, etc)

⇒ multiple processes loaded from storage, potentially in many
repetitive cycles

Offline multiprocess execution:

sample of a graph

6 of 10



System architecture GRID processing feedback

CVMFS feedback from GRID processing (adapted from S. Wenzel)

4% CPU

8-core limit

total CPU

io-wait

Significant io-wait load

when processes are

loaded from CVMFS

▶ generally good multi-core usage and efficiency; very nice
from local disk

▶ we have multiple parallel GRID jobs accessing CVMFS
simultaneously

▶ improvement: increase CVMFS caching size, e.g. 4 → 50 GB
▶ interested in further collaboration with CernVM team on

adaptation and tuning for our use-case
▶ in parallel, working on internal solutions to improve

performance, such as:
▶ structural changes to graph layout
▶ optimising process granularity or sequencing (for better cache

behaviour)
▶ RPath optimisations

7 of 10



Questions?

Links
▶ aliBuild: https://alisw.github.io/alibuild/
▶ CI & ALICE software documentation: https://alisw.github.io/

Contact details
▶ timo.wilken@cern.ch
▶ GRID processing: sandro.wenzel@cern.ch

8 of 10

https://alisw.github.io/alibuild/
https://alisw.github.io/
mailto:timo.wilken@cern.ch
mailto:sandro.wenzel@cern.ch


Backup: ALICE’s Continuous Integration system

▶ custom build tool (aliBuild) and software distribution
▶ suited to local development: native incremental build support

▶ pull requests against software projects are tested
▶ built against full software suite

▶ nightly builds on Jenkins produce reusable tarballs
▶ speed up CI, local builds, . . .

▶ repack tarballs and publish to different backends
▶ CVMFS, RPMs, Grid

9 of 10



Backup: Reusable tarballs

▶ hashing of build metadata to uniquely identify builds
▶ synchronise with repository to assign sequential version numbers

▶ version numbers used for published packages: packages built later from the same git
tag under different conditions get "later" version numbers

▶ large speed-ups for:
▶ continuous integration: no need to rebuild full software stack for each pull request
▶ local builds, e.g. for physics analysis: rebuild only what is needed
▶ published packages: re-use previous days’ dependencies, which rarely change

10 of 10


	System architecture
	GRID processing feedback
	Appendix

