W mass in CMS: status and prospects

Lorenzo Bianchini

INFN, Sezione di Pisa

The experimental program in PRIN 2017F28R78

WP1: Muon scale calibration

- Local tracker calibration
- Momentum calibration
- FSR in J/Ψ

WP2: Differential Drell-Yan

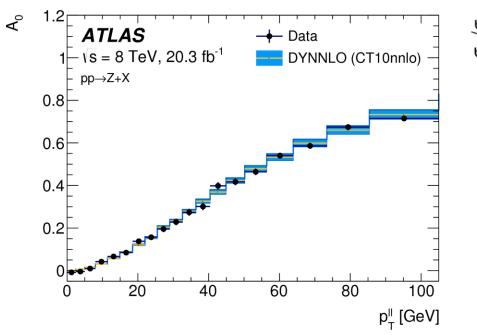
- q_T , |y|, A_i in CC Drell-Yan
- q_T , |y|, Q in NC Drell-Yan

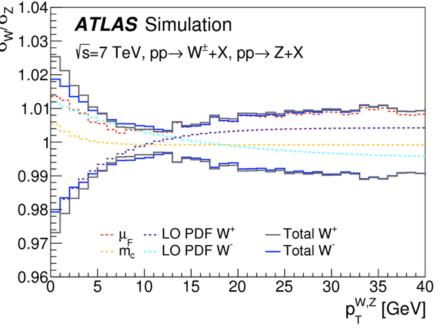
■ WP3: *W* mass

- Framework
- Fit optimization
- Systematics

The experimental program in PRIN 2017F28R78

- WP1: Muon scale calibration
 - Local tracker calibration
 - Momentum calibration
 - FSR in J/Ψ
- WP2: Differential Drell-Yan
 - q_T , |y|, A_i in CC Drell-Yan
 - q_T , |y|, Q in NC Drell-Yan \leftarrow
- WP3: W mass
 - Framework
 - Fit optimization
 - Systematics To be finalized

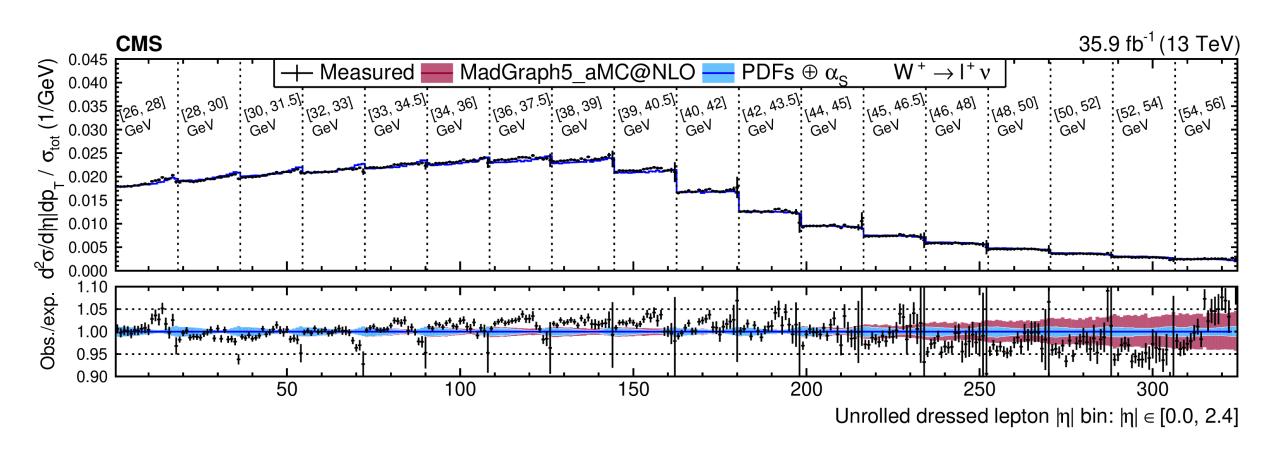

Preliminary results presented by Suvankar at ICHEP2020 Part of the new calibration?


In tandem

- Not by us directly
- $d\sigma/dQ \rightarrow JHEP12(2019)059$
- $d\sigma/dq_{\tau} \rightarrow JHEP12(2019)061$
- $d^2\sigma/dQdq_{\tau} \rightarrow SMP-20-003$ to be submitted soon

Preamble: W mass in CMS

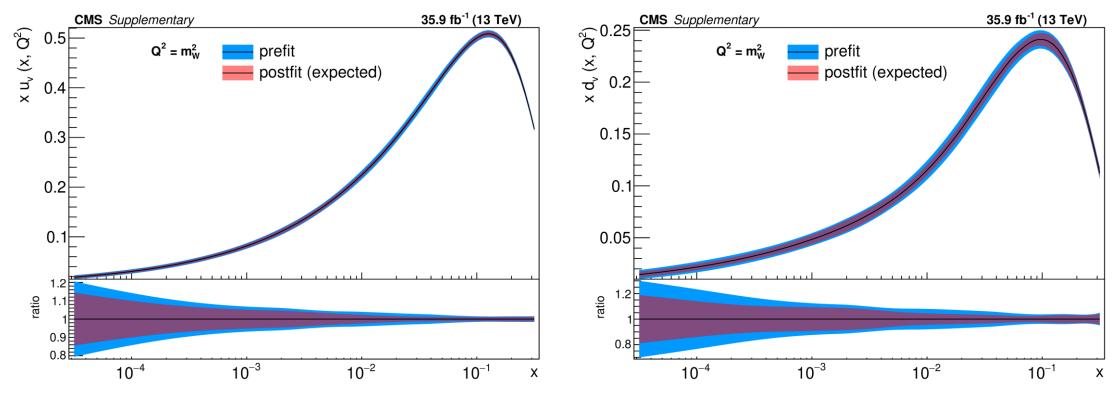
- CMS guidelines: avoid treatment of theory uncert. a' la ATLAS
 - Z-to-W porting w/ tuned PYTHIA8 resulted in aggressive QCD uncertainty
 - And in tension with resumed calculations and other collider data (→ PRD 103 (2021) 012003)



Preamble: W mass in CMS

Two roads have been thus pursued by CMS:

- Perform ancillary measurements to constrain model parameters
 - e.g.: charge asymmetry measurement \rightarrow more precise PDFs \rightarrow smaller Δ_{PDF}
- Use state-of-the-art calculations taken with their native uncertainties
 - $NLO_{PS} \rightarrow NNLO_{PS}$
 - $(N^2)LL \rightarrow N^3LL$
 - NNPDF3.0 → NNPDF3.1


Rapidity, helicity, 2D x-sections, and charge asymmetry

PRD 102 (2020) 092012

Rapidity, helicity, 2D x-sections, and charge asymmetry

- High-precision and granularity 2D measurement constrains the PDFs
 - Though not a rigorous PDF fit, constraining power is evident

http://cms-results.web.cern.ch/cms-results/public-results/publications/SMP-18-012/

Known limitations

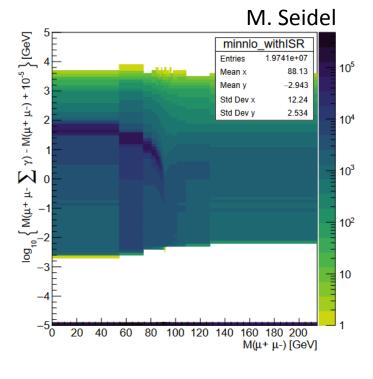
- Reference MC for W-helicity: MG5_aMC@NLO + Pythia8
 - Small statistic (\rightarrow L_{eq} = 5/fb)
 - Large ren./fact. scale uncertainties and only LL-accurate at low q_T
 - Poor treatment of QED (LL-accurate)
- Using best muon calibration at that moment (→ EPJC 72 (2012) 2194)
 - Mostly a benchmark for HZZ4l
 - Precision not sufficient for M_W
- Some further descoping needed before moving to next steps:
 - Drop electron channel
 - No transverse mass fit
 - Restrict to well understood sub-sample of Run 2 data

Highlights on the new MC

Generation of dedicated MiNNLO_{PS} + Pythia (QCD) + Photos (QED FSR) samples has been a major achievement

• L_{eq} ~ 30/fb with 9% of negative events for both for CC and NC Drell-Yan \rightarrow ~1B

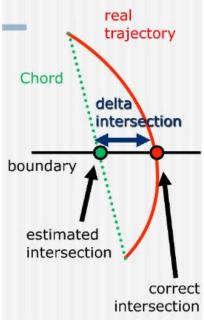
events in full simulation


- Several iterations required before...
 - attaining formal NNLO accuracy (→ MiNNLO issue)
 - get all needed weights (→ CMSSW issues)
- Ad hoc Pythia tune was made to match this MC to published CMS $Z q_{\tau}$ and ϕ^* data at 13 TeV
 - Providing a better pre-fit modeling

SMP-17-010 data Best tune for MiNNLO+Pythia CP5 tune with/without fix

Highlights on the new MC

- QED FSR now handled by Photos
 - Reweighting to **Horace 'new exp'** (\rightarrow matched O(α) EW and h.o. QED) in 2D-space $m_{||}$ vs log($m_{||(\Sigma v)} m_{||} + \varepsilon$)
 - Check impact of QED ISR unaccounted for by Photos
 - Reduced uncertainty from EW m.h.o
- Reweighting of $d\sigma/dq_T$ to SCETlib (\rightarrow N³LL matched to NNLO)
 - Preferred over others due to shorter execution time


- Strategy to marginalize the ren./fact. scales within the fit to be finalized
 - Likely, a combination of log-normal priors decorrelated in bins of q_T and |y| of sizes:

```
\sigma(\mu_{R} \uparrow, \mu_{F})/\sigma(\mu_{R}, \mu_{F})
\sigma(\mu_{R}, \mu_{F} \uparrow)/\sigma(\mu_{R}, \mu_{F})
\sigma(\mu_{R} \uparrow, \mu_{F} \uparrow)/\sigma(\mu_{R}, \mu_{F})
```

Muon scale calibration

- Original plan was to use analytical model to parametrize curvature biases
 - Large non-closure was spotted long ago by Elisabetta and Gigi
 - Among others: issue in Geant Surface Interection Precision, bias in smoothing step of KF-based fit (KF → GBL refit), ...
- Scale calibration has undergone a deep refurbishment
 - Now resembling a complete re-alignment algorithm
 - Analytical method then possible on top or re-calibrated tracks

See Elisabetta's talk !!!

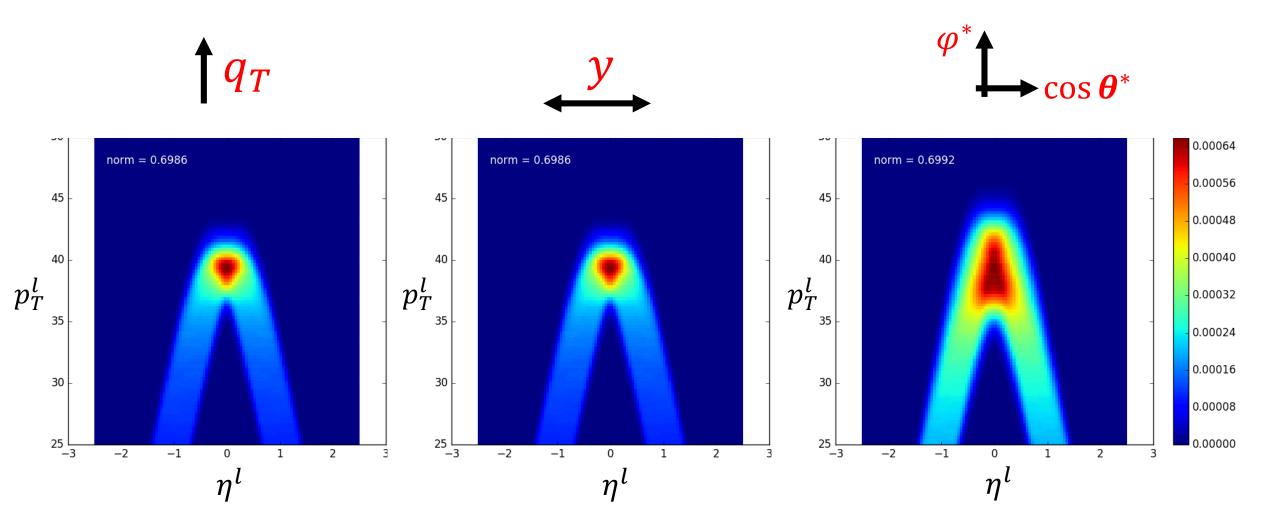
Framework

- A number of additional unexpected experimental bugs/issues were found
 - Muon pre-firing inefficiency (1-3% effect)
 - Dynamical hit inefficiencies in Si strips (first half of 2016 data affected, $^{\sim}1\%$ effect)
 - Various bugs in MC generation
 - → Many re-processing of our lightweight analysis ntuples needed
- Analysis framework now able to handle large number of histograms exploiting multi-threading (RDataFrame)
 - Extensive use of a dedicated **AMD EPYC™ 7742** server with up to **256 threads**
- Statistical analysis (fit) now using a custom TensorFlow-based minimizer developed by CERN colleagues

See Suvankar's talk !!!

A few more thoughts

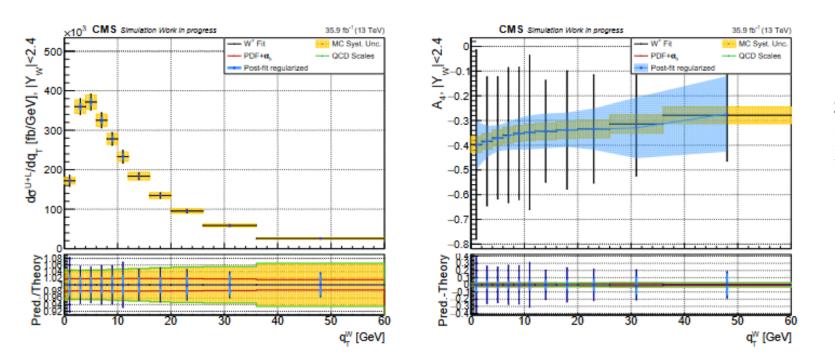
- With the profiling of PDFs and/or the advent of new PDF fits (\rightarrow NNPDF4.0), Δ_{PDF} will likely become sub-leading
- Uncertainty on q_T still remains
 - Reweighting to N³LL will improve, but:
 - How much?
 - Which correlation scheme?
 - NP corrections?
 - Opportunity of including low-PU data (200/pb) under study, but likely not enough to make a real impact
- We are thus pursuing a third approach
 - M_W and model parameters in a single pass \rightarrow agnostic fit


The agnostic fit

■ Express the joint p.d.f. (p_T^l, η^l) as a linear combination of a set of templates:

$$\frac{\Delta^2 \sigma}{\Delta p_T^l \Delta \eta^l} = \sum_{\Delta q_T, \Delta |y|} \frac{\Delta^2 \sigma_{-1}}{\Delta q_T \Delta |y|} \left(T_{-1}(p_T, \eta \mid M_W) + \sum_{i=0...4} A_{i, \Delta q_T, \Delta |y|} \times T_i(p_T, \eta \mid M_W) \right)$$

- Unpolarized cross sections $\Delta^2 \sigma_{-1}/\Delta q_T \Delta |y|$ and angular coefficients $A_{i,\Delta q_T,\Delta |y|}$ parametrize the W production & decay dynamics
- Templates T_i are independent from any QCD
 - depend parametrically on M_W


Templates in (p_T^l, η^l)

First results

- First round of agnostic fit deployed on 2016 data
 - Limited by finite size of aMC@NLO sample available at that time

Results are encouraging and cry out for a continuation of this analysis!

See Valerio's talk !!! http://cds.cern.ch/record/2776894/files/?ln=it

Agnostic fit w/ new MC in Elisabetta's thesis → targeting first CMS paper on W mass

Looking ahead

- The agnostic approach benefits the most from statistics
 - Not necessarily better than a MC-driven approach on small data samples
 - Extension to full Run2 is a big challenge
- Thanks to new fundings from ERC (→ "ASYMOW" project) we can continue this effort towards a full Run2+Run3 result
 - The work done so far with the PRIN has been fundamental

SPECIAL THANKS TO THE YOUNGEST!

- Many challenges remain open:
 - Large-scale MC production of full simulation
 - Detector stability over three (+three) years of data taking
 - Dealing with a complicated fit model

Conclusions

- Even if in an extraordinarily troubled period, many steps forward have been achieved since our last meeting in Pisa:
 - https://indico.sns.it/event/18/
- We are confident that the first CMS W mass result is behind the corner.
 Financial support from the PRIN has been very important

Many new opportunities are coming soon!

Finally... Thanks a lot, Alessandro, for organizing this meeting!