
Wmass analysis framework
Valerio Bertacchi, Lorenzo Bianchini, Elisabetta Manca,
Gigi Rolandi, Suvankar Roy Chowdhury

Milano-Pisa PRIN meeting
05/10/2021

Introduction

● Input of the analysis
● A brief overview of the offline analysis framework developed for the

analysis.
● Challenges : complexity and volume.
● Discussion of concepts, not much technical details.

2

Input data samples

● Input data-tier - NANOAOD
● Contents of the data-tier
● Developments in CMS software framework

3

NANOAOD II

● The data model employed by CMS has a tiered structure, where each subsequent format contains a more
compact summary of the event data than its predecessor. “RAW” event size is ~1 MB

● Our analysis uses the “NANOAOD” data-tier.
○ Demand came from ever increasing demand to store CMS

data and MC samples as LHC continues to operate
○ Contents are flat ROOT trees one each for Event, Run, Lumi and some meta data
○ For every event, the properties of high-level objects(e.g. muons) are stored as arrays in the branches.
○ Size per event is 1-2 kB

● The 17 billion events recorded in Run 2 data-taking period, plus
accompanying 60 billion events produced by MC simulations
fit in just under 140 TB!

4

 NANOAOD II

● The event content of the NANOAOD lacked some of the event content information desired by our analysis

● Our group spent considerable time and effort in finalizing the correct event content in the version of the

NANOAOD to be used

○ Store kinematics of generator level leptons at higher floating point precision

○ Finalize the missing muon properties

○ Optimize storage of Generator Weight sets - the biggest challenge.

● All the necessary changes were done in “CMSSW” - the cms software framework

● With these changes, we can run every aspect of the analysis starting from the NANOAOD format.

● Beneficial to other precision measurements

● For our analysis, we use CMS the “SingleMuon” dataset

○ Contains at least one muon above certain pT threshold(our case 24 GeV)

● MC samples include the WJets, Drell-Yan, Single Top, Semi-leptonic decays of TTbar.

● Total size for 2016 data and MC ~ 10TB

5

Offline software

● Requirements
● Choice of underlying tool - RDataFrame
● Analysis graph
● Framework modules
● Framework milestones
● Thinking in higher dimensions
● Performance

6

Requirements of offline software - I

● Our wishlist - fast, flexible and robust framework w.r.t the complexity of the analysis.

● What we are dealing with?

○ Let’s take numbers from 2016 only

○ ~108 events

○ ~400 nominal histograms

○ ~30K variations of the histograms

○ High dimensionality of histograms

● Different file types

○ Input as root files

○ Meta data(samples, x-sec) as text, json file etc.

7

Requirements of offline software - I

8

● Our wishlist - fast, flexible and robust framework w.r.t the complexity of the analysis.
● Complexity in terms of histos and their Variations

4D templates (η,pT,mT,iso) for bkg
two fakes processes: one low mT and one high mT

6D templates (η,pT,mT,iso,y,qT) for signal

Type N variations

SFactors 8

LHEScale 6

PDFHessian 60

alpha-s 2

Mu pT variations* 2

JME variations 4

Variations

Requirements of offline software - II

● Built an analysis framework based on RDataFrame.

○ https://github.com/emanca/wproperties-analysis

● What RDataFrame offers?

○ Simple but powerful tool to analyse data with modern C++, python.

○ Parallelizable - transparent MT and supported for multi-core machines.

○ Easy to express dependencies on different objects.

○ Graph style approach, optimized event loop.

○ Interfaces to different types of data sources

○ User writes analysis - ROOT takes care of optimization.

9

https://github.com/emanca/wproperties-analysis

RDataFrame overview

● Three simple steps for an user.
● Build a DataFrame object from a source

○ ROOT tree, csv etc.
○ Non-ROOT data can also be used via RDataSource.

● Transformations on the input.
○ Define: new columns from existing columns.
○ Filter: create ranges of events by applying cuts

● Apply actions on the transformed data.
○ e.g., Histogramming

● Event loop is triggered only when the full analysis has been set up and an first access to a result has
been made.

○ User should be careful here.

10

Thinking in terms of Graphs

// d2 is a new data-frame, a transformed version of d

auto d2 = d.Filter("x > 0")

 .Define("z", "x*x + y*y");

// make multiple histograms out of it

auto hz = d2.Histo1D("z");

auto hxy = d2.Histo2D("x","y");

data

filter
x > 0

histo
x,y

histo
z

define
z

d

d2

● More intuitive way of visualizing an analysis workflow.

11

Pisa Framework

● The framework is divided into several smaller packages dedicated to execute certain tasks

○ Core package: https://github.com/emanca/RDFprocessor.git

○ Analysis package: https://github.com/emanca/wproperties-analysis

● Each package contains several modules(or code where algorithm are implemented)

● All the types of modules are written mostly written in C++. Some are written in python

○ Compiled with g++ and dictionaries are generated with reflex enabling them to be loaded in pyroot

● User API is written in python.

○ Loads information on samples, systematic variations, selections etc from json, python dictionaries.

○ Accepts command line inputs.

○ Builds the analysis graph by defining the dependence of various modules.

○ Launches jobs in Multi threading + multi-processing mode for all samples.

12

https://github.com/emanca/RDFprocessor.git
https://github.com/emanca/wproperties-analysis

Pisa Framework - Snapshot of the repo

13

All external inputs like various weights, sample info, plotting tools

Fitting tools based on combine-tf

Core software which builds and runs the analysis

User API

Creating complex variables on the fly from input NANOAOD

Applying various selections, loading external inputs, defining histograms

Analysis graph input

 Load external
inputs

Histo +
variations

Histo +
variations

Filter
Filter

Each filter selects events
applying a set of cuts

● Graph style approach to

an analysis.

● Intuitive visualisation of

the whole analysis.

● Event loop is run only

once.

● parallelizable since it is

built on RDF.

Each node has a sequence of
modules(written in C++ or python) to be

executed

14

External input(ROOT)
- Scale Factors

- ZpT reweighting

Linking between nodes
in python

 Definitions
in nanotools

Framework - modules I
● definitions : Define every quantity needed later starting from columns available in input.

○ E.g. MT

15

Input columns
New column

Helper function

float W_mt(float,float,float,float)

● Columns for variations of quantities, e.g.

Muon_pt_correctedUp/Down, are also

defined at this stage. Inputs Inputs + new quantities with
variations

baseDefinitions

Framework - modules II
● weightDefinitions: takes ROOT files with external inputs, e.g. Scale factors.

● Reads required histos and defines new columns for nominal weights and variation of

weights.

16

auto defineWHSF = [](float pt, float eta, float charge){
 int bin = SFhistoPlus->FindBin(eta,pt);//SFhistoPlus or Minus
 return SFhistoPlus->GetBinContent(bin);
}

This returns a vector< float>

Inputs Inputs + new quantities with
variations Inputs + new quantities with

variations + weights and variations

baseDefinitions Weight modules

At this point we
are ready to
make plots etc.

Pisa analysis framework V1

● The framework has seen 2 major milestones

● Work of Valerio’s thesis is based on the

first version

● Background analysis is run outside RDF

● ROOT histogramming

● Needed an additional processing of

NANOAOD with “post-processor”to

add some missing branches

17

Thinking in higher dimensions

18

Inside each region get a template of
η-pT of the muon

● in bins of W rapidity and W pT

● for each helicity cross section
● for different mass hypothesis

Thinking in higher dimensions

19

Many templates!

Pisa analysis framework V2

20

● If we want to fit the QCD shape and normalisation from the 4 regions simultaneously, we have

to deal with 7D histograms per helicity per nuisance !

● To achieve this, we switched to BOOST histogramming.

● Advantages

○ It’s possible to supply a vectorized array of weights to a histogram - easier to implement

systematics.

○ Faster disk I/O

○ Major development was done to enable parallelized filling higher dimensional histos via

shared memory

● We can now process these complex objects at ~ MHz level

● Getting the inputs for the fit takes some minutes thanks to our optimised framework

● Drop usage post-processing tools - run directly from NANOAOD

Performance Scaling
On Pisa server with AMD EPYC 7742 processor, 256 cores, 54 TB SSD nvme

21

● The graph shows event processing rate for DATA.

○ Total 55.9 GB input file size read from SSD.

○ 429124293 events

● Histograms written out : 13

● The graph shows event processing rate for SIGNAL MC

○ Total 397 GB input file size read from SSD.

○ 652538760 events

● Histograms written out : 6351

Adding a factor 500 histos but pay a factor 4 in speed.

Outlook

● We have developed an analysis framework based on ROOT DataFrame.

○ Lot of brainstorming from our side in the last years.

● A flexible framework to handle the large complexity of the analysis.

○ RDataFrame + Boost histogramming allows data processing at MHz level

● Encouraging performance results already obtained.

22

More on RDF

● Seminar by E. Manca and E. Guiraud.

○ https://indico.cern.ch/event/849610/

● Reference manual

○ https://root.cern/doc/master/classROOT_1_1RDataFrame.html

● Tutorials

○ https://root.cern.ch/doc/master/group__tutorial__dataframe.html

23

BACKUP

24

Data representation in RDataFrame

pt_x pt_y pt eta

entries
or events
or rows

→

columns
or branches←
can contain any kind

of c++ object

25

RDataFrame example

26

TDataFrame d("t", "f.root");
auto h = d.Filter("v2 > 2")
 .Histo1D("v1");
h->Draw();

TFile f("f.root");
TTree *t = nullptr;
f.GetObject("t", t);
t->Draw("v1 >> h", "v2 > 2");
TH1 *h = (TH1F*)(gDirectory->Get("h"));
h->Draw();

Read tree “t” in file “f.root”. For events for which
“v2 > 2”, fill histogram “h” with “v1”

26

RDataFrame example II

27

Traditional approach RDataFrame approach

27

Thinking in terms of Graphs

// d2 is a new data-frame, a transformed version of d

auto d2 = d.Filter("x > 0")

 .Define("z", "x*x + y*y");

// make multiple histograms out of it

auto hz = d2.Histo1D("z");

auto hxy = d2.Histo2D("x","y");

data

filter
x > 0

histo
x,y

histo
z

define
z

d

d2

● More intuitive way of visualizing an analysis workflow.

28

Thinking in terms of Graphs

● Simplest example from our analysis
● Input split for different regions(filters)
● Single module(muonHistos) with histogram definitions called for

each region.
29

Performance Scaling
● Several trials to optimize the run time.

○ Same code, varied sample size….

● Multi-threading + multiprocessing gives us the

best runtimes.

○ Smaller samples(e.g. diboson) - single

thread with multi-processing.

○ Large samples - Multi-threaded

● For MT, we decided to use upto 128 cores.

● Table shows runtimes for all the analysis steps

starting from the NanoAOD inputs to prefit

plotting involving RDF.

● Extraction of signal templates is the most time

consuming part.

Step Runtime
(sec) RDF used

Preparing inputs for
background

estimation, run on all
samples

1817 yes

Fake estimation from
data 252 yes

Signal template
extraction from

WJets
1265 yes

NanoAOD to input for fit- total runtime ~ 1 hour
30

Thinking in terms of Graphs

31

Thinking in terms of Graphs

32

