MIXED QCD-EW CORRECTIONS TO NEUTRAL CURRENT Milano-Pisa PRIN meeting 06/10/2021

Automation of the calculation

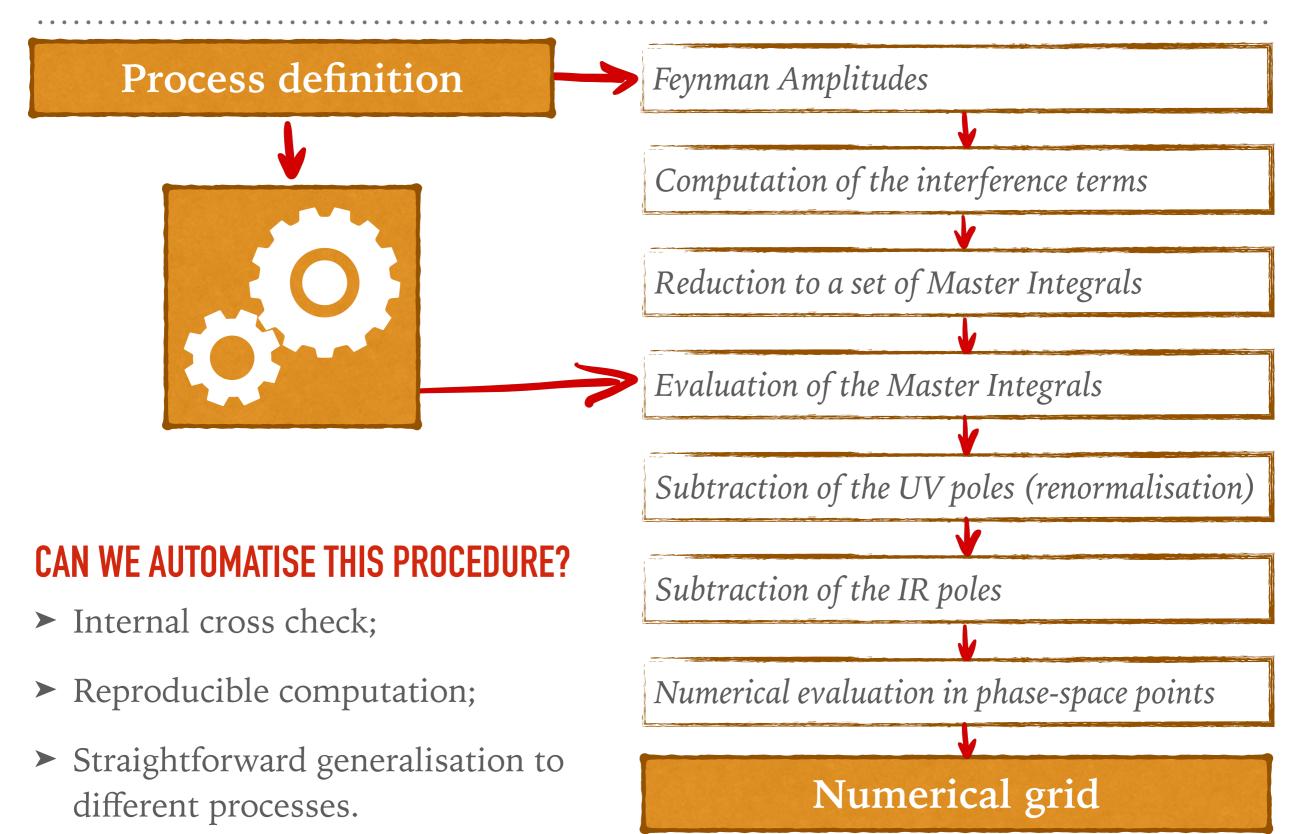
UNIVERSITÀ DEGLI STUDI DI MILANO

Simone Devoto

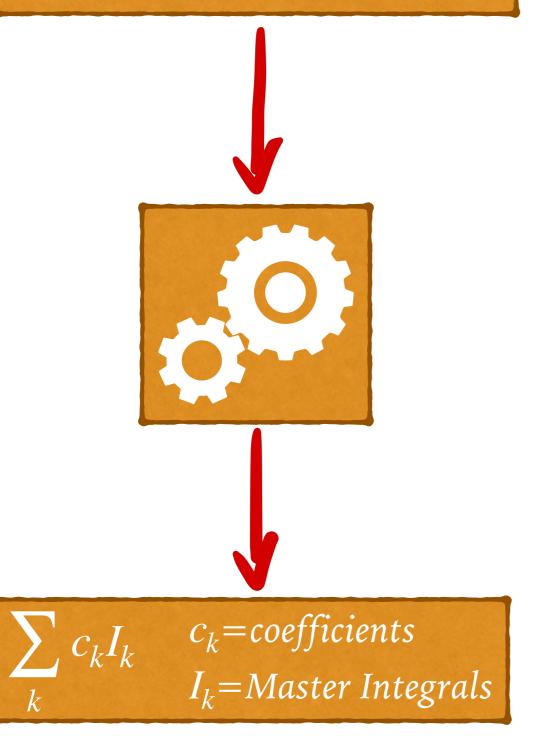
Process definition Feynman Amplitudes Computation of the interference terms *Reduction to a set of Master Integrals Evaluation of the Master Integrals* Subtraction of the UV poles (renormalisation) **CAN WE AUTOMATISE THIS PROCEDURE?** Subtraction of the IR poles Internal cross check; Reproducible computation; Numerical evaluation in phase-space points Straightforward generalisation to

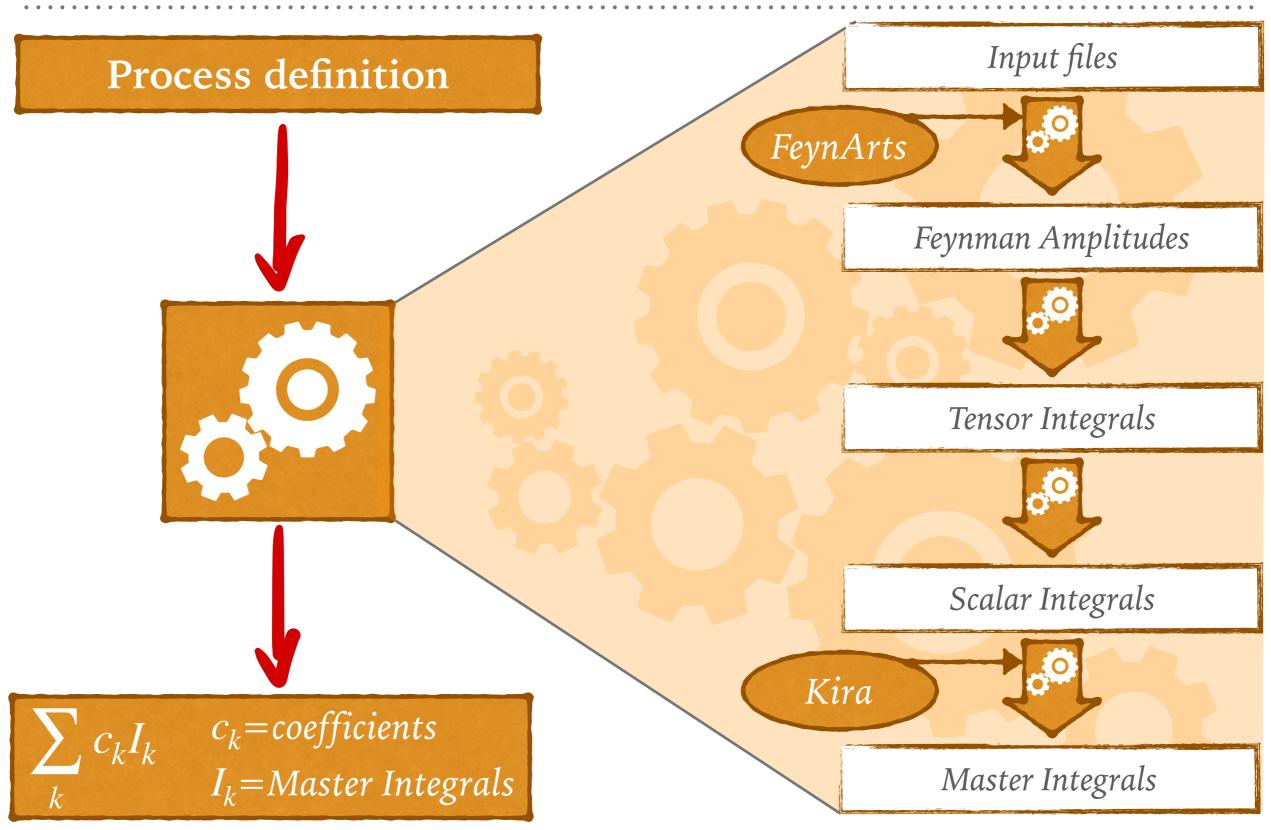
 Straightforward generalisation different processes.

Numerical grid

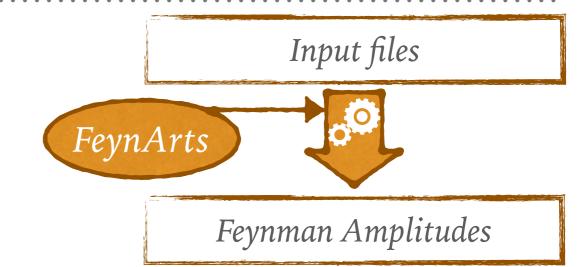


Process definition





Mathematica package for the generation and visualisation of Feynman diagrams and amplitudes.



Application of the

Feynman rules to produce

Feynman amplitudes

Output we are

interested in!

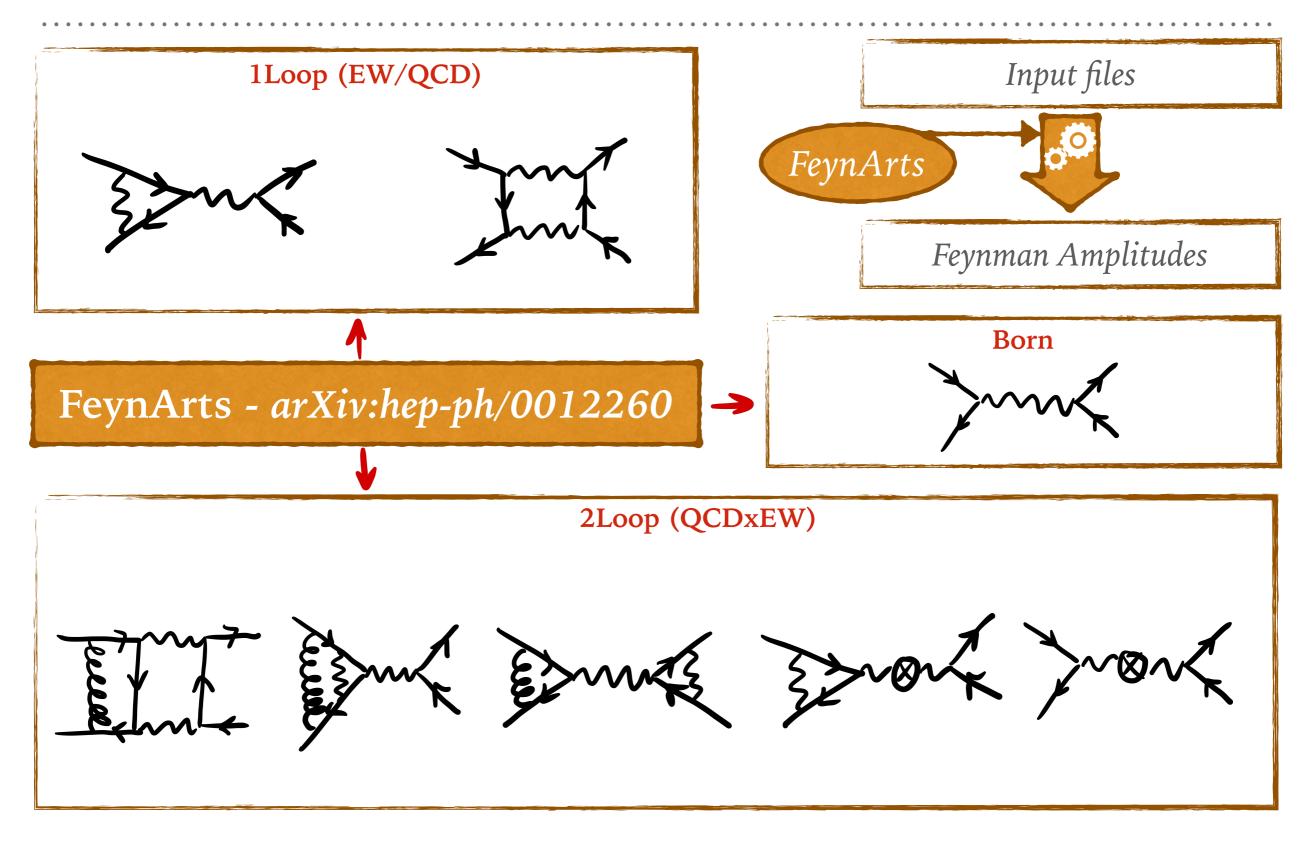
► FeynArts work-flow:

Creation of the **topologies**

Insertion of <mark>fields</mark> into the topologies

- Several models are already defined, but full customisation is possible;
- We use the Standard Model with Background Field Gauge, which restores some QED-like Ward identities in the full Electroweak Standard Model.

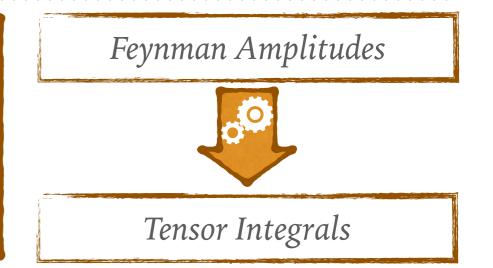
GENERATION OF THE AMPLITUDES



COMPUTATION OF THE INTERFERENCE TERMS

Mathematica

In-house routines to automatically perform the Dirac and Lorentz Algebra in dimensional regularisation.



• The result can be written as a sum of **tensor integrals** in the form:

$$\int \prod_{i=1}^{L} dq_i \, \frac{q_1^{\mu_1} \dots q_1^{\mu_j} \dots q_L^{\mu_1} \dots q_L^{\mu_l}}{P_1 \dots P_t}$$

where:

- $q_i \rightarrow \text{loop momentum};$
- $L \rightarrow$ number of independent loop momenta;
- $P_i = k_i^2 m^2 \rightarrow$ inverse propagator, k_i being a linear combination of external and loop momenta.

<u>ISSUE</u>: Handling γ_5 in dimensional regularisation.

Object inherently 4D: how can we use it in arbitrary space-time dimension?

COMPUTATION OF THE INTERFERENCE TERMS

	ANTICOMMUTATION $\{\gamma_{\mu}, \gamma_{5}\} = 0$	CYCLICITY OF THE TRACE	Feynman Amplitudes
't Hooft and Veltmann Nucl. Phys. B 44 (1972) 189–213	×		
Kreimer et al. <i>Phys. Lett. B</i> 237 (1990) 59–62		×	Tensor Integrals

For neutral-current Drell Yan proven that at 2loops the two prescriptions yield:
 ▶ different scattering amplitudes; ▶ same finite corrections after subtraction.
 (M. Heller, A. von Manteuffel, R. M. Schabinger and H. Spiesberger, arXiv:hep-ph/2012.05918)

Our procedure:

- 1. Use anticommutation relation, bring all γ_5 at the end of the Dirac trace;
- 2. Use $\gamma_5^2 = 1$, end up with zero or one γ_5 in each Dirac trace;

3. Replace the (single) leftover γ_5 with the relation: $\gamma_5 = \frac{i}{4!} \epsilon_{\mu\nu\rho\sigma} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}$.

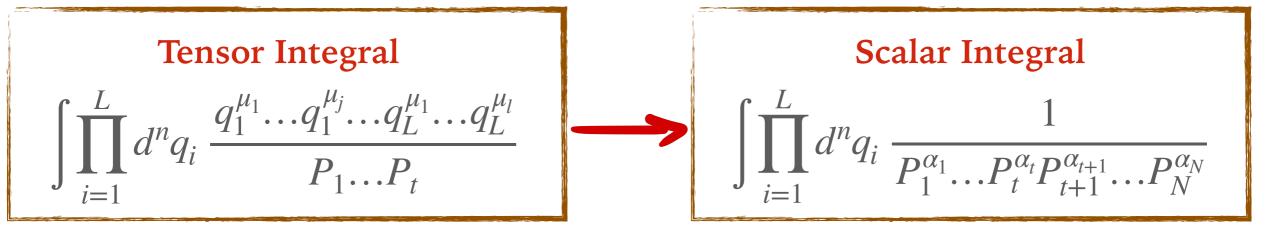
REDUCTION TO MASTER INTEGRALS (I)

Mathematica

In-house routines to automatically write the tensor integrals in terms of **Integral families** of S**calar integrals**, better suited for the application of reduction algorithms



Scalar Integrals



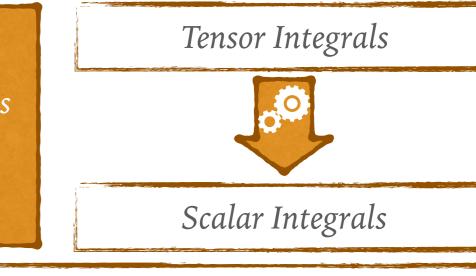
• Write all the scalar products involving loop momenta in terms of inverse propagators: $\begin{cases}
P_0 = q^2 - m_0^2 \\
P_1 = (q - p_1)^2 - m_1^2
\end{cases} \qquad \clubsuit \qquad \begin{cases}
q^2 = P_0 + m_0^2 \\
q \cdot p_1 = 1/2 (P_0 + m_1 - P_1 - m_2)
\end{cases}$

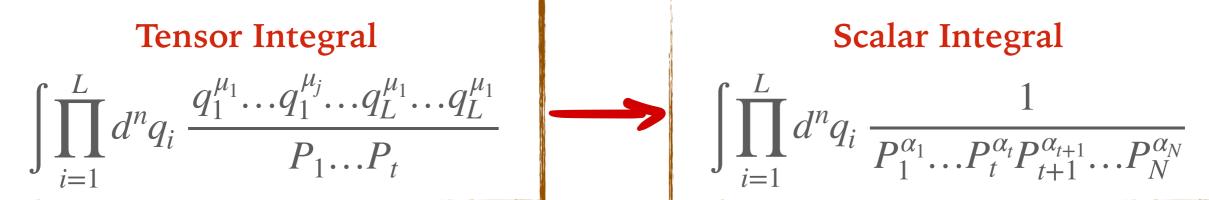
To this end, it is necessary to introduce **auxiliary propagators** $P_{t+1}^{\alpha_t+1} \dots P_N^{\alpha_N}$

REDUCTION TO MASTER INTEGRALS (I)

Mathematica

In-house routines to automatically write the tensor integrals in terms of **Integral families** of S**calar integrals**, better suited for the application of reduction algorithms

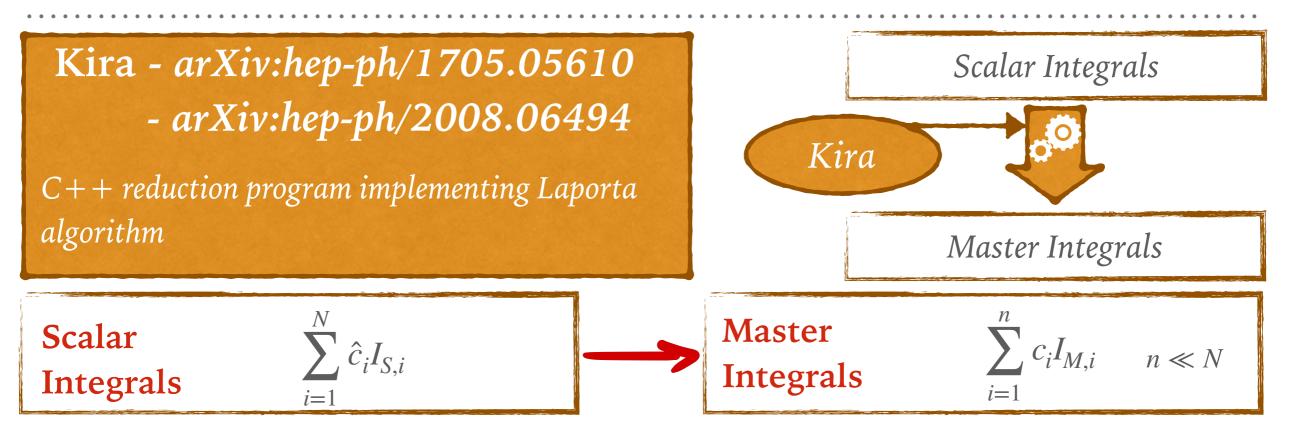




- ► A set of inverse propagators $\{P_1^{\alpha_1}, ..., P_N^{\alpha_N}\}$ defines an **integral family**;
- A scalar integral in an integral family is uniquely identified by the (positive or negative) powers of the exponents of the inverse propagators:

$$\int \prod_{i=1}^{L} dq_i \frac{1}{P_1^{\alpha_1} \dots P_t^{\alpha_t} P_{t+1}^{\alpha_{t+1}} \dots P_N^{\alpha_N}} = \text{Family1}[\alpha_1, \dots, \alpha_t, \alpha_{t+1}, \dots, \alpha_N]$$

REDUCTION TO MASTER INTEGRALS (II)

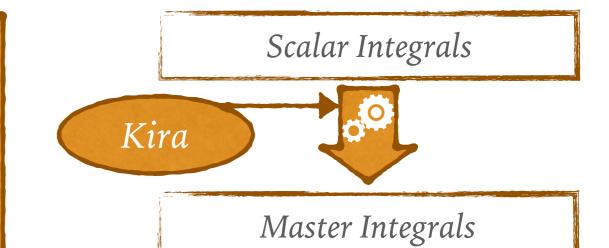


- ► Expressions written as a sum of **scalar integrals** with the respective coefficient;
- All the scalar integrals are not independent: linear relations between them are provided by integration by parts (IBP) identities;
- We can reduce the large set of scalar integrals to a smaller set of master integrals;
- Kira applies Laporta algorithm to apply IBP identities to a set of integrals in order to find the linear relations between them.

REDUCTION TO MASTER INTEGRALS (II)

Kira - arXiv:hep-ph/1705.05610 - arXiv:hep-ph/2008.06494

C++ reduction program implementing Laporta algorithm



Integration by parts identities (IBP)

Gauss
Theorem:
$$\int d^n q \frac{\partial}{\partial q^{\mu}} f^{\mu}(p_i^{\mu}, \dots, q_i^{\mu}) = 0$$

We choose, e.g.

$$f^{\mu}(p_i^{\mu}, \dots, q_i^{\mu}) = \frac{p_1^{\mu}}{(q^2 - m_0^2)^{\alpha_0} ((q + p_1)^2 - m_1^2)^{\alpha_1}}$$

Relation between $F[\alpha_0 + 1, \alpha 1, 0, ...]$ and $F[\alpha_0, \alpha 1 + 1, 0, ...]!$

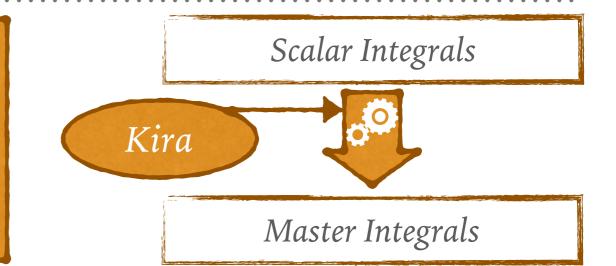
By using different IBP relations it is possible to define **ladder operators** to rise and lower the indices in an integral family!

$$\int d^{n}q \frac{\partial}{\partial q^{\mu}} f^{\mu} = -\int d^{n}q \left(\frac{2\alpha_{0} q \cdot p_{1}}{(q^{2} - m_{0}^{2})^{\alpha_{0}+1} ((q + p_{1})^{2} - m_{1}^{2})^{\alpha_{1}}} + \frac{2\alpha_{1} (q + p_{1}) \cdot p_{1}}{(q^{2} - m_{0}^{2})^{\alpha_{0}} ((q + p_{1})^{2} - m_{1}^{2})^{\alpha_{1}+1}} \right) = 0$$

REDUCTION TO MASTER INTEGRALS (II)

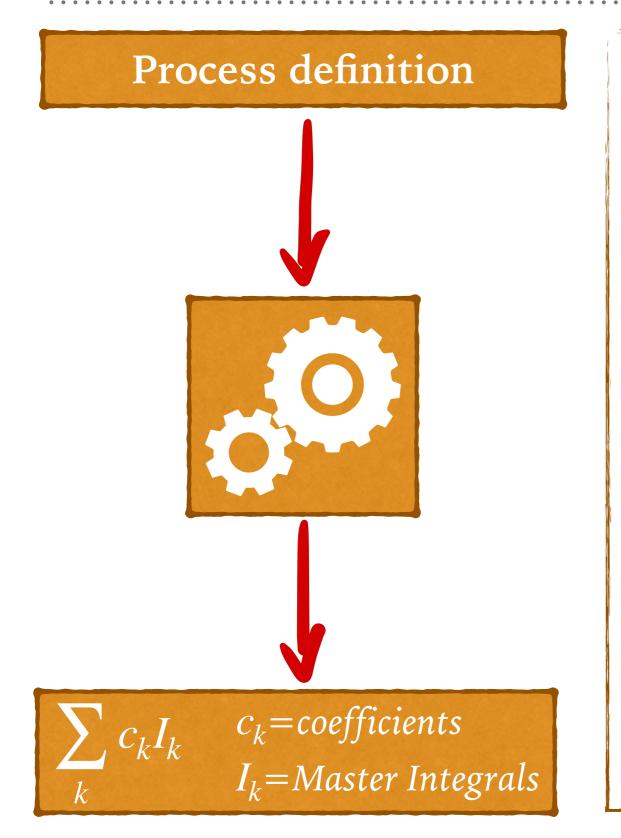
Kira - arXiv:hep-ph/1705.05610 - arXiv:hep-ph/2008.06494

C++ reduction program implementing Laporta algorithm



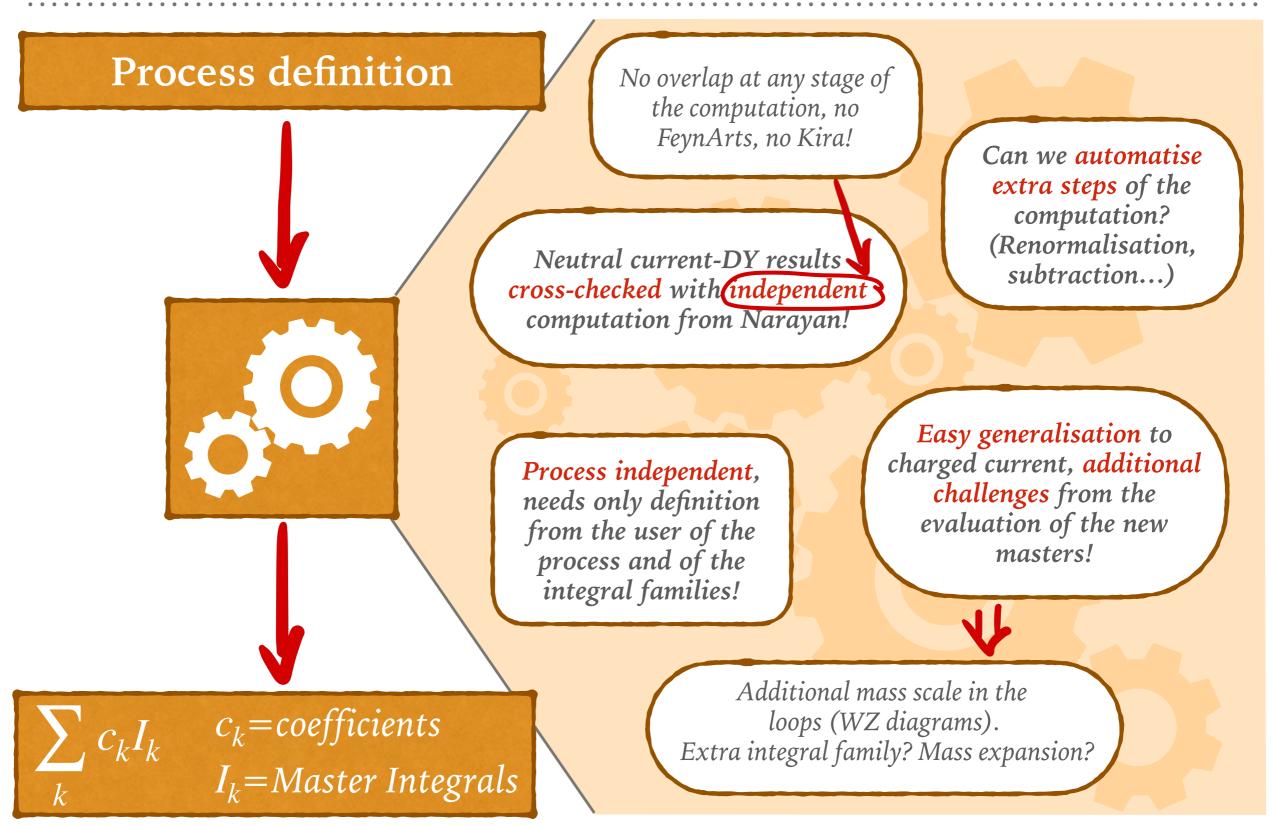
- The ladder operators would in principle generate an infinite system of equations for an infinite number of scalar integrals!
- **Kira** implements **Laporta algorithm**:
 - Isolates a set of scalar integrals (**seed integrals**) defined by maximum value of the sum of positive and negative propagator powers;
 - Orders the integrals by **complexity** (preferring lower propagator powers);
 - Generates a **finite system** of IBP equations;
 - Removes the **linearly dependent** relations;
 - Extracts a **set of master integrals** (the user can provide a preference);
 - Uses a **Gauss-type forward elimination algorithm** to solve the system of IBP equations and provide an expression of all the seed integrals in terms of master integrals.

FINAL RESULTS

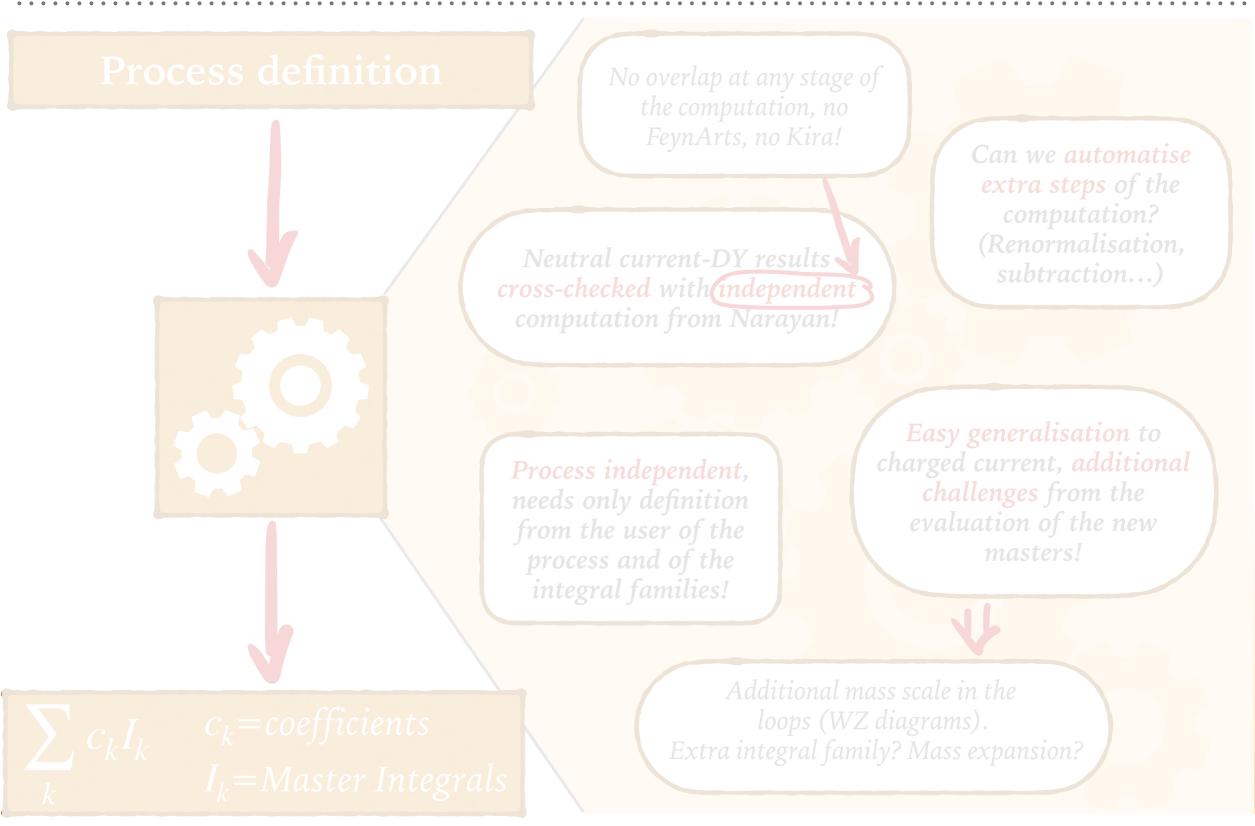


- Kira produces as an output a list of substitutions for the scalar integrals provided as an input;
- Kira output can be naturally exported as a list of substitutions in Mathematica format;
- In-house Mathematica routine generates the final result:
 - Imports the substitutions to Master Integrals from Kira, applies them to the expressions in terms of scalar Integrals;
 - Performs a final **simplification** of the coefficients of the Master Integrals.

SUMMARY AND OUTLOOK



SUMMARY AND OUTLOOK



SUMMARY AND OUTLOOK

