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Plan

� Motivations; basics of perturbative QCD
∼ 1st lecture

� Fixed-order calculations
∼ 2nd lecture

� Fixed-order calculations and Event Generators
∼ 3rd lecture

� Event Generators
∼ 4th lecture
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Ellis, Stirling, Webber, QCD and Collider Physics,

Cambridge Press (1996)
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HCP Summer Schools: hcpss.web.cern.ch/hcpss

CTEQ Summer Schools: www.cteq.org

Les Houches writeups (“Physics at TeV collider” series)

Check CERN Academic Training lectures (several speakers)



Strong interactions: why bother?

For aesthetic reasons?

For practical reasons

? This result is too beautiful to be false; it is more important to have
beauty in one’s equations than to have them fit experiment (P. Dirac)



Aesthetic reasons

QCD is a mathematically beautiful, and deceptively simple, theory

I It is a one-parameter theory (αS)

I It is the only piece of the SM which is not a low-energy theory

I It has a lot of open and very difficult problems (e.g. confinement)



Practical (Dirac may say mundane) reasons

At LHC, one is swamped

by QCD processes

For discoveries, this fact can be anything

from utterly irrelevant to crucial

But it can hardly be neglected, espe-
cially when trying and answer the question
“What did we discover?”



Before understanding the meaning of a discovery, you need to make one

A peak at Mµµ = 2 TeV: QCD is irrelevant

A SUSY-like case. Lots of backgrounds, but one need not rely on blind

theoretical QCD predictions for those: tuning to data (in control

regions) will help. Hence, QCD is important, but not crucial

In other cases, you may not be so lucky



(Extreme) example: discovery of single top
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The signal region is at Discriminant −→ 1, as one sees from the templates
of single-top production (not shown here)

Discovery depends on theoretical results for signal



QCD = Strong interactions

QuantumChromoDynamics is

I A non-abelian gauge theory, with gauge group SU(3)

I There are 8 spin-1 massless gluons that carry the interaction (adjont representation

of SU(3)):

Aa, a = 1, . . . 8

I There are 3 ×NF spin-1/2 quarks, the matter fields (fundamental representation of

SU(3)):

ψ
(f)
i , i = 1, 2, 3 ; f = 1, . . . NF

“Chromo” since (1, 2, 3) = (r, g, b) are called colours

f are the flavours. Their number NF depends on which physics one
considers. We call 1, . . . 6 −→ up, down, strange, charm, beauty, top
QCD interactions are flavour blind; differences among quarks are due to EW interactions



The QCD Lagrangian

L = −
1

4
Gµν

a Ga
µν +

NF∑

f=1

ψ̄
(f)
i

(
iγµD

µ
ij −mfδij

)
ψ

(f)
j + LGF + Lghost

Covariant derivative:

Dµ
ij = δij∂µ + igtaijA

a
µ

Gluon strengh tensor:

Gµν
a = ∂µA

a
ν − ∂νA

a
µ − gfabcAb

µA
c
ν

Plug the term fAA into the Lagrangian, and you’ll get gluon 3- and
4-gluon self interactions – it makes all the difference wrt to QED. This
term has a fundamental importance for the very existence of hadrons



SU(3) colour Lie algebra

ta and T a are the SU(N = 3) generators (in the fundamental and adjoint
representations), with

[ta, tb] = ifabctc, [T a, T b] = ifabcT c, (T a)bc = −ifabc

Choosing the normalization

Tr
(
tatb

)
= TRδ

ab ≡
1

2
δab

one has
∑

a

taijt
a
jk = CF δik , Tr

(
T aT b

)
= CAδ

ab

CF =
N2 − 1

2N
≡

4

3
, CA = N ≡ 3

Fundamental identity (Fierz)

∑

a

taijt
a
kl =

1

2

(
δilδjk −

1

N
δijδkl

)



Gell-Mann matrices

λ1 =




0 1 0

1 0 0

0 0 0


 λ2 =




0 −i 0

i 0 0

0 0 0


 λ3 =




1 0 0

0 −1 0

0 0 0




λ4 =




0 0 1

0 0 0

1 0 0


 λ5 =




0 0 −i

0 0 0

i 0 0


 λ6 =




0 0 0

0 0 1

0 1 0




λ7 =




0 0 0

0 0 −i

0 i 0


 λ8 =

1√
3




1 0 0

0 1 0

0 0 −2




Hermitean, traceless, that provide a representation for SU(3) generators:

ta =
1

2
λa



Feynman rules (QED like)

iδik
(γµp

µ +mf )nm

p2 −m2
f + iε

iδab

p2 + iε

[
−gαβ + (1 − λ)

pαpβ

p2 + iε

]

iδab

p2 + iε

[
−gαβ +

pαnβ − pβnα

n · p
− n2 pαpβ

(n · p)2

]

−igtakiγ
α
mn



Feynman rules

−gfabc
[
gαβ(p− q)γ + gβγ(q − r)α + gγα(r − p)β

]

−ig2feacfebd
(
gαβgγδ − gαδgβγ

)

−ig2feadfebc
(
gαβgγδ − gαγgβδ

)

−ig2feabfecd
(
gαγgβδ − gαδgβγ

)

Nothing like that in QED



Feynman rules

In axial gauges the gluon has only physical (ie transverse) polarization states =⇒ simpler,

intuitive physical picture. Drawback: involved computations become, well, more involved

In covariant gauges of non-abelian theories, ghosts must be included to cancel

unphysical polarization states of gluons

iδab

1

p2 + iε

gfabcqα



Light-quark symmetries

Lmatter = i

NF∑

f=1

(
ψ̄

(f)
L γµD

µψ
(f)
L + ψ̄

(f)
R γµD

µψ
(f)
R

)
−

NF∑

f=1

mf

(
ψ̄

(f)
L ψ

(f)
R + ψ̄

(f)
R ψ

(f)
L

)

ψ
(f)
L =

1

2
(1 − γ5)ψ

(f) , ψ
(f)
R =

1

2
(1 + γ5)ψ

(f)

There is a huge symmetry when mf = 0 (chiral)

ψ
(f)
L −→ eiφLUff ′

L ψ
(f ′)
L , ψ

(f)
R −→ eiφRUff ′

R ψ
(f ′)
R

SUL(NF ) ⊗ SUR(NF ) ⊗ UL(1) ⊗ UR(1)

Chiral symmetry is not apparent in the observed spectrum; and, quantization effects may

also distroy classical symmetry

I SUL(NF ) ⊗ SUR(NF ) −→ SUV (NF ), “isospin”; SUA(NF ) is spontaneously

broken, with Goldstone bosons = light mesons (π’s for NF = 2, π’s+K’s+η

for NF = 3)

I UL(1) ⊗ UR(1) −→ UV (1), baryon number conservation; UA(1) spoilt

by quantum effects (Lθ)



Why SU(3)

An exciting and intricate story, that involved some of the best minds

of the 20th century

� From SU(2) to SU(3) – strangeness (Gell-Mann, Nishijima) and the

eightfold way (Gell-Mann, Ne’eman)

� Postulation of entities associated with the SU(3) fundamental

representation [quarks (Gell-Mann), aces (Zweig)]

� Quarks violate spin-statistics (∆ = uuu) =⇒ attach hidden d.o.f.

(colour) to them (Han, Nambu, Greenberg)

� SLAC experiments hint that Feynman’s partons are the same as quarks

� Promote SU(3)c to local symmetry (Fritzsch, Gell-Mann, Weinberg)

Note: started from global SU(3)flav and arrived at local SU(3)c!



Hadron spectrum

One makes following assumptions

� Hadrons are bound states formed by quarks

� Meson states are
∑

i

ψ
(f)?

i ψ
(f ′)
i

� Baryon states are
∑

ijk

εijkψ
(f)
i ψ

(f ′)
j ψ

(f ′′)
k

� Colour non-singlet states (ie not invariant for ψi → Uijψj)

are forbidden



Experimental evidence for N = 3

R =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
=

∑

i,f

σ(e+e− → q
(f)
i q̄

(f)
i )

σ(e+e− → µ+µ−)
−→

N∑

i=1

NF∑

f=1

e2(f)

Numerator and denominator are the same diagram (at O(α0
S
))

e−

e+ q
_+µ,

−µ, q

=⇒ R = N

[ (
2

3

)2

+

(
−

1

3

)2

+

(
−

1

3

)2
]

...and so forth for more quark flavours

Measurements are amply
consistent with N = 3
(and test charge assignments)



Further experimental evidence

∝ λaλa −→ CF

∝ fabcfdbc −→ CA

Four-jet production in e+e−

is sensitive to both

This also shows that clean
QCD studies can be done at
lepton colliders



Forget about gluon self-interactions. Is what remains just

QED, with eight charges rather than one?

Unfortunately, not

Consider e+e− → γγ and uū→ gg



e+e− → γγ

D1 D2

Check gauge invariance. Take photon #4 to be definite:

D1 · k4 = −D2 · k4



uū→ gg

G1 =
g2

e2
(ta3ta4)c2c1D1 G2 =

g2

e2
(ta4ta3)c2c1D2

Check gauge invariance. Take gluon #4 in analogy with the QED case:

D1 · k4 = −D2 · k4 =⇒ G1 · k4 6= −G2 · k4

QCD does not violate gauge invariance, obviously. The calculation above is
wrong, since one Feynman diagram has been left out



uū→ gg

G3 =
g2

e2
fa3a4btbc2c1 D3

1/e2 is just to have the same normal-

ization in D3 as in D1 and D2

Now use SU(3) algebra

fa3a4btbc2c1
= −i (ta3ta4)c2c1

+ i (ta4ta3)c2c1

Thus the complete amplitude is:

(e2/g2)A = (ta3ta4)c2c1
[D1 − iD3] + (ta4ta3)c2c1

[D2 + iD3]

By direct computation:

D1 · k4 = −D2 · k4 = iD3 · k4 =⇒ A · k4 = 0



Lessons

� One can’t fool colour. QCD is not QED (really?!?!)
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Lessons

� One can’t fool colour. QCD is not QED (really?!?!)

� Not only gluon self-interactions “recover” gauge invariance – they have

profound consequences for the high-energy behaviour of the theory

� True, QCD is not QED. But amplitudes can be decomposed into sums

of QED-like terms, which factor out colour structures naturally

associated with diagrams with no gluon self-interactions

� Does this matter? What we observe is not an amplitude, but an

amplitude squared.

It actually does matter, since it suggests a beautiful re-organization of
amplitudes, and an approximation of amplitudes squared which is
parametric and systematically improvable



Take again the uū→ gg amplitude, square it and sum over colours

(I neglect pre-factors now)

A = (ta3ta4)c2c1
Â1 + (ta4ta3)c2c1

Â2

Â1 = D1 − iD3 Â2 = D2 + iD3

Then (implicit sums over identical indices):

∑

colours

|A|2 = Tr
(
tatbtbta

) ∣∣∣Â1

∣∣∣
2

+ Tr
(
tatbtbta

) ∣∣∣Â2

∣∣∣
2

+ 2 Tr
(
tatbtatb

)
<

(
Â1Â

?
2

)

By direct computation (try it!):

4Tr
(
tatbtbta

)
= N 3 − 2N + 1/N

4Tr
(
tatbtatb

)
= −N + 1/N



Hence: the gauge-invariant quantities Âi (dual amplitudes)
do not interfere at the leading order in N
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do not interfere at the leading order in N

� This is a general property of QCD amplitudes
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amplitudes)
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Hence: the gauge-invariant quantities Âi (dual amplitudes)
do not interfere at the leading order in N

� This is a general property of QCD amplitudes

� Gauge invariance of Âi implies enormous simplifications in their

computations. By using recursion relations? one reduces the complexity

from factorial to polynomial in the number of legs (at least for gluon

amplitudes)

� It may be useful to think that QCD=QED±O(10%), but sometimes it

is misleading. Subleading terms can be O(1/N), and interference

contributions may actually be dominant for certain observables.

Handle with care!

? There are beautiful results which I’ll not be able to present. If interested, check papers by

Berend & Giele, Cachazo, Svrcek, & Witten, Britto, Cachazo & Feng



Decomposition of amplitudes

I Only gluons

A(a1, . . . an) =
∑

σ∈P ′

n

Tr (taσ(1) . . . taσ(n)) Â
(
kσ(1), . . . kσ(n)

)

Sum over non-cyclic permutations. By using the SU(3) Lie algebra, a QED-like structure

emerges, even if there are no fermions around. Physical meaning: gluon σ(i) is

colour-connected to gluons σ(i − 1) and σ(i + 1). I’ll show later that this determines

the singularity structure of Â in Lorentz space

I One quark-antiquark line, and n gluons

A(i; a1, . . . an; j) =
∑

σ∈Pn

(taσ(1) . . . taσ(n))ij Â
(
kq; kσ(1), . . . kσ(n); kq̄

)

Sum over all permutations (including non-cyclic ones)

I More than one quark-antiquark line, and n gluons: same as before, with

combinatorics



Decomposition of amplitudes

I Only gluons

A(a1, . . . an) =
∑

σ∈P ′

n

Tr (taσ(1) . . . taσ(n)) Â
(
kσ(1), . . . kσ(n)

)

Sum over non-cyclic permutations. By using the SU(3) Lie algebra, a QED-like structure

emerges, even if there are no fermions around. Physical meaning: gluon σ(i) is

colour-connected to gluons σ(i − 1) and σ(i + 1). I’ll show later that this determines

the singularity structure of Â in Lorentz space

I One quark-antiquark line, and n gluons

A(i; a1, . . . an; j) =
∑

σ∈Pn

(taσ(1) . . . taσ(n))ij Â
(
kq; kσ(1), . . . kσ(n); kq̄

)

Sum over all permutations (including non-cyclic ones)

Review: Mangano & Parke, hep-th/0509223



On colour transformations

For U ∈ SU(3), the definition of Lie algebra implies:

U = I + iδθaX
a + O

(
(δθ)2

)
, Xa = ta, T a

By construction, quarks, antiquarks, and gluons transform according to

3,3̄, and 8. If one denotes

{ci}
3
i=1 {c̄i}

3
i=1 {ga}

8
a=1

the possible colours of a quark, antiquark, and gluon, an infinitesimal colour

transformation then amounts to:

c′i = ci + iδθat
a
ijcj

c̄′i = c̄i − iδθat
a
jic̄j

g′a = ga + iδθcT
c
abgb



One can use a matrix notation

c =




c1

c2

c3


 c̄ = (c̄1, c̄2, c̄3) g = gat

a

The transformations given before are

c′ = Uc c̄′ = c̄ U ? g′ = Ug U ?

Now consider the colour of a qq̄ “state”

cc̄ =




c1

c2

c3


 (c̄1, c̄2, c̄3) =




c1c̄1 c1c̄2 c1c̄3

c2c̄1 c2c̄2 c2c̄3

c3c̄1 c3c̄2 c3c̄3




Hence

(cc̄)′ = U (cc̄)U ?

Same as for gluons



From the colour viewpoint, a gluon then behaves almost as if it were a qq̄

pair. One talks about the colour and anticolour of a gluon, as one talks

about the colour of a quark and the anticolour of an antiquark. Note:

(cc̄) = fat
a + f9I =⇒ Tr (cc̄) = 3f9

The f9 component (singlet) is obviously not there in the case of gluons.

A graphical representation of this is:

= −
1

3

and the last term drops out in the N → ∞ limit

These rules are used to draw colour flows pictorially



Example:

σ (i)σ (i−1) σ (i+1)

Tr (taσ(1) . . . taσ(n)) Â
(
kσ(1), . . . kσ(n)

)

You may read this as:

...but don’t take it too literally: it is misleading



Representation of colour algebra

The transformation rules given before

c′i = ci + iδθat
a
ijcj

c̄′i = c̄i − iδθat
a
jic̄j

g′a = ga + iδθcT
c
abgb

can be compactly written by introducing the following representation of the

Lie colour algebra:

~Qp = {ta}8
a=1 ,

{
−taT

}8

a=1
, {T a}8

a=1 , p = q, q̄, g

~Qp1 · ~Qp2 = ~Qp2 · ~Qp1 , ~Qp · ~Qp ≡ Q2
p = C(p)I

C(q) = C(q̄) = CF C(g) = CA

so that for any colour configuration xp = {ci}, {c̄i}, {ga}

x′p =
(
I + i ~δθ · ~Qp

)
xp



Summary

� QCD is a non-abelian gauge theory with gauge group SU(3)

� Matter fields (quarks) and gauge bosons (gluons) carry

colour charges

� Colour can only be observed indirectly, through its static

(spectroscopy) and dynamic effects

� A QCD amplitude can be decomposed into a sum of

linearly-independent colour structures times gauge-invariant

dual amplitudes

� Dual amplitudes are orthogonal at the leading order in N



Memo on RGE and beta functions

Suppose A is a dimensionless quantity which depends on a single large energy scale

Q� m, with m any mass. If the limit m→ 0 exists, then by dimensional analysis A is

independent of Q

A = A(Q/m,αS)
m→0
−→ A(αS)

This elegant derivation does not survive quantization. Because of the presence of

ultraviolet divergences, the theory must be renormalized, and this always introduce an

arbitrary mass scale µ (in A and αS renormalized)

A
quantization

−→ A(Q2/µ2, αS)

The scale µ is arbitrary, and physical results cannot depend on it

d

dµ2
A(Q2/µ2, αS) =

(
∂

∂µ2
+
∂αS

∂µ2

∂

∂αS

)
A = 0

which is a Renormalization Group Equation



In order to solve RGE’s, one defines

t = log
Q2

µ2
, β(αS) = µ2∂αS

∂µ2

(
−
∂

∂t
+ β(αS)

∂

∂αS

)
A = 0

The running coupling αS(Q) is then introduced

t =

∫ αS(Q2)

αS

da
1

β(a)
, αS(µ

2) = αS

from which it follows that

A(Q2/µ2, αS) = A(1, αS(Q
2))

Thus, the scale dependence of A is known if that of αS(Q
2) is known

The computation of β functions in QFTs has profound implications



The case of QED...

...is relatively simple, and allows a graphical explanation of the running coupling

In a relativistic framework, an electron is surrounded

by a cloud of virtual electrons and positrons. From

the distance, one may not see their charges. By look-

ing closer (probe with larger momenta), one starts to

resolve them, and electron charge appears larger

Q2 dα

dQ2
= βQED(α) , βQED(α) =

α2

3π
+ O(α3) =⇒ α(Q2) =

1

137 − 1
3π

log(Q2/m2
e)

Since α→ ∞ for Q2 → e411πm2
e, Landau (1954) thought QED was ill-defined



The case of QCD

In QCD there are additional contributions from gluon self-interaction...

that have a dramatic effect on the β function

βQCD(αS) = −β0α
2
S

+ O(α3
S
) , β0 =

11CA − 2NF

12π
, CA = NC ≡ 3

Basically, the gluonic contribution to the vacuum polarization reverses the sign of the β

function, in such a way that αS(Q2) decreases when Q2 increases (for NF ≤ 16...)

This is called Asymptotic Freedom
Gross, Politzer, Wilczek (1973) Nobel prize 2004

This is the opposite as in QED, which implies that QCD is not an effective low-energy

theory of something unknown

αS(Q2) =
αS(µ2)

1 + αS(µ2)β0 log(Q2/µ2)



The (perturbative) computation of βQCD

Time after 1973 has not passed in vain. We have now

1

4π
β(αS) = −β̂0

(αS

4π

)2

− β̂1

(αS

4π

)3

− β̂2

(αS

4π

)4

− β̂3

(αS

4π

)5

+ O(α6
S
)

thanks to

� β̂0: Gross, Wilczek, Politzer (1973)

� β̂1: Caswell, Jones (1974)

� β̂2: Tarasov, Vladimirov, Zharkov (1980)

� β̂3: van Ritbergen, Vermaseren, Larin (1997)

Note that β̂3 requires a four-loop computation, and the evaluation of about

50000 Feynman diagrams – there are a lot of spinoffs from a computation

like this one (computing and mathematics)



Comparisons with data
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There is nowadays a very
solid evidence that αS

runs as predicted by QCD
with NC = 3
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The discovery of asymptotic freedom proved that indeed quarks can behave

as free particles in DIS (and elsewhere), as suggested by SLAC results

It also allows one to use standard perturbation techniques,

as the case of βQCD determination spectacularly shows

We also have hints on why quarks/gluons cannot be seen in isolation

(i.e. confinement). Naively, large distances ≡ small scales =⇒ inter-parton

force grows

Lattice gives further (solid) evidence



Summary

� In certain kinematic regimes, strong interactions are weakly coupled:

asymptotic freedom allows us to use the perturbative machinery

� We know (we suspect) that QCD can describe physical hadrons and

explain confinement

This is not sufficient for us to give predictions for physical observables.

What we can compute (quark and gluon reactions) is non-observable, and

what is observable (hadrons) we cannot compute

We need three additional concepts to proceed:

I Hadron-parton duality

I Infrared safety

I Factorization theorems


