SM+Higgs at Hadron Colliders

Christian Schwanenberger University of Manchester

Hadron Collider Physics Summer School CERN 10 June 2011

CELEBRATING 350 YEARS

Objective of Elementary Particle Physics

"So that I may perceive whatever holds the world together in its inmost folds." Goethe, Faust

From the smallest dimensions in microcosm to the largest dimensions in the universe

MANCHESTER SM+Higgs at Hadron Colliders - Christian Schwanenberger - HCPSS 2011, CERN

Big Bang in the Lab?

MANCHESTER SM+Higgs

SM+Higgs at Hadron Colliders

- Christian Schwanenberger -

HCPSS 2011, CERN

THE ROYAL SOCIETY

The Tevatron Collider at Fermilab

The Large Hadron Collider (LHC) at CERN

The Large Hadron Collider:

proton-proton collider
high energy: √s = 14 TeV
currently: √s = 7 TeV

Number of Events for Data Analysis

Integrated Luminosity

Tevatron

LHC

11 fb⁻¹ delivered

0.74 fb⁻¹ delivered

SOCIETY

Integrated Luminosity

Tevatron

11 fb⁻¹ delivered

0.74 fb⁻¹ delivered

THE ROYA

LHC

Peak Luminosity

Tevatron

LHC

4.3x10³² cm⁻² s⁻¹

13x10³² cm⁻² s⁻¹

THE ROYA

SOCIETY

Peak Luminosity

13x10³² cm⁻² s⁻¹

Data Taking Efficiency

THE ROYA

SOCIETY

Data Taking Efficiency

SC. SOCIETY

Cross Sections

a lot more
 "uninteresting" than
 "interesting" processes, at
 design luminosity
 (L=10³⁴ cm⁻²s⁻¹):

- any event:	10 ⁹ / second
– W boson:	150 / second
- top quark:	8 / second
- Higgs (150 Ge	V): 0.2 / second

• "interesting" events get selected by

trigger: online selection to find
events with hard jets, leptons etc.
physics analysis: offline selection to
enhance signal over background ratio

Number of Events

similar size of electroweak samples: top, W, Z LHC is superior for

- production of heavy particles (e.g. squark&gluons, Z' and W' bosons, ...)
- high p_T physics (e.g. quark substructure)
- many B physics analyses (e.g. rare decays in $B_s \rightarrow \mu^+ \mu^-$, CP violation in $B_s \rightarrow J/\Psi \phi$

Part I: QDC Electroweak Physics Top Quark Physics Search for the SM Higgs

Part II:

Searches for Physics Beyond the SM

jets

HCPSS 2011, CERN

-1-7

MANCHESTER

What is a Cross Section?

- differential cross section: dσ/dΩ:
 - probability of a scattered particle in a given quantum state per solid angle dΩ
 - e.g. Rutherford scattering experiment
- other differential cross sections: dσ/dE₊(jet)
 - probability of a jet with given E_{τ}
- integrated cross section: $\sigma = \int d\sigma/d\Omega \ d\Omega$

Measurement:
$$\sigma = (N_{obs} - N_{bg})/(\epsilon L)$$

Luminosity

Cross Section in Hadron Hadron Scattering

• cross section is convolution of pdf's and matrix element

• calculations are done in perturbative QCD:

- possible due to factorization of hard ME and pdf (can be treated independently)
- strong coupling \alpha_s is relatively large higher orders needed, complicated calculations

measure to test underlying theory

Parton Density Functions: HERA

MANCHESTER **SM+Higgs at Hadron Colliders**

- Christian Schwanenberger -

HCPSS 2011, CERN

Jet Cross Sections

inclusive jet processes: qq, qg, gg

- tests perturbative QCD at highest energies
- highest E_T probes shortest distances
 - Tevatron: $r_q < 10^{-18}$ m, LHC: $r_q < 10^{-19}$ m
 - could e.g. reveal substructure of quarks

High Mass Dijet event, M=1.4 TeV

Dijet Event at the LHC

M(jj)=2.55 GeV
pT(j1)=420 GeV
pT(j2)=320 GeV

HCPSS 2011, CERN

Jet Cross Sections, Tevatron

- excellent agreement with **QCD calculation over 9** orders of magnitude!
- no excess at high E₊ no hint for quark substructure

Data / Theory

0.5

700 600

p_JET (GeV/c)

Systematic uncertainty Including hadronization and UE

Midpoint: R=0.7, fmatter =0.75

HCPSS 2011, CERN

Jet Cross Sections, LHC

Strong Coupling Constant

SM+Higgs at Hadron Colliders

MANCHESTER

 minimize correlations between data and pdf's by restricting analysis to kinematic regions where Tevatron data do not dominate the pdf determination

 keep 21 data points

$$\alpha_{s} (M_{z}) = 0.1161_{-0.0048}^{+0.0041}$$

- Christian Schwanenberger -

HCPSS 2011, CERN

Electroweak Interaction

1983, UA1 experiment, √s=540 GeV

discovery of Z boson at pp accelerator SPS (CERN, Geneva)

W and Z Production at the LHC

SOCIETY

$ZZ \rightarrow \ell \ell \ell \ell \ell$ Production

important background to H→ZZ searches...

- data: 10 events
- signal: 8.73±0.45
- background: 0.35±0.04 (jets faking electrons, muons in jets, top pair production)

eeee, eeμμ, μμμμ

$ZZ \rightarrow \ell \ell \ell \ell \ell$ Production

smallest cross section measured at hadron collider

MANCHESTER SM+Higgs at Hadron Colliders - Christian Schwanenberger - HCPSS 2011, CERN 31

WW/WZ Production

fit to dijet mass:

 $\sigma(\overline{p}p \rightarrow WW/WZ) = 18.1 \pm 4.1 pb$

SM: $\sigma(WW/WZ) = 15.9 \pm 0.9 \text{ pb}$

Albert will discuss the bump...

Electroweak Cross Sections: Summary

LHC: impressive progress (including **Ts**, diboson) Tevatron: measured cross sections O(1 pb)

SOCIETY

Z Boson-Quark Couplings

SOCIETY

Z Boson-Quark Couplings

MANCHESTER

- Christian Schwanenberger -

Z Boson-Quark Couplings

surpassed LEP precision using inclusive jets

0.23153 ± 0.00016

 0.23099 ± 0.00053

 0.23159 ± 0.00041

 0.23098 ± 0.00026

 0.23221 ± 0.00029

 0.23220 ± 0.00081

 0.2324 ± 0.0012

 0.2309 ± 0.0010

0.236

0.238

🖉 SOCIETY

MANCHESTER SM+Higgs at Hadron Colliders - Christian Schwanenberger - HCPSS 2011, CERN 36
Outline

1995, CDF and DØ experiments, Fermilab

1995, CDF and DØ experiments, Fermilab

1995, CDF and DØ experiments, Fermilab

HCPSS 2011, CERN

SOCIETY

MANCHESTER

SM+Higgs at Hadron Colliders

HCPSS 2011, CERN

See THE ROYA

The Top Quark

• needed as isospin partner of bottom guark

MANCHESTER SM+Higgs at Hadron Colliders - Christian Schwanenberger -

Top Quark Pair Production

THE ROYA

C. SOCIETY

Top Quark Pair Signatures

MANCHESTER SM+Higgs at Hadron Colliders - Christian Schwanenberger -

HCPSS 2011, CERN

Lepton+jets Signatures

Lepton+Jets Topological Cross Section

measure if production rate is as predicted by NLO QCD

Lepton+Jets Topological Cross Section

Top Pair Production Cross Section

combination: ±6% !

good agreement with SM in all channels

MANCHESTER

- Christian Schwanenberger -

Top Pair Production Cross Section

⇒ good agreement with SM

Single Top Quark Production

direct measurement of |V_{tb}|

s-channel:

t-channel:

*V*_{tb} b g 9000

51

• jets

Iepton

• b-jets

Single Top Production

MANCHESTER

SM+Higgs at Hadron Colliders

- Christian Schwanenberger -

HCPSS 2011, CERN

See THE ROYAL

Tevatron Single Top Cross Section

use multivariate analysis techniques

5σ observation 5σ

observation

 $|V_{tb}| = 0.88 \pm 0.07$

\Rightarrow good agreement with SM in all channels

t-channel Single Top Quark Production

Nat

Future Legacy: Top Mass

- free parameter in the Standard Model
- check the self-consistency of the Standard Model in combination with W mass measurement
- prediction on Higgs mass

Extraction Techniques: Templates

- use variables strongly correlated with m_{top}
- compare data to MC with different m_{top} hypotheses

all hadronic

Extraction Techniques: Templates

• use variables strongly correlated with m_{top} • compare data to MC with different m_{top} hypotheses

57

SOCIETY

Extraction Techniques: Templates

• use variables strongly correlated with m, • compare data to MC with different m_{top} hypotheses

58

SOCIETY

JES calibration

<u>jet energy scale:</u> translate jet into parton energy

Result in I+jets Channel

Result in I+jets Channel

template method

Top Mass Summary

Mass of the Top Quark

$$m_{top} = 173.3 \pm 1.1 \text{ GeV} \pm 0.6\%$$

Self-consistency of the SM

Self-consistency of the SM

improved W mass measurement is critical

Outline

MANCHESTER

SM+Higgs at Hadron Colliders

- Christian Schwanenberger -

HCPSS 2011, CERN

THE ROYAL SOCIETY

The Higgs Boson and the SM Lagrangian

The Higgs Boson and the SM Lagrangian

$$\mathcal{L} = -\frac{1}{2} \operatorname{Tr} \left(W_{\lambda g} W^{\lambda g} \right)$$

$$-\frac{4}{7} B_{\lambda g} B^{\lambda g}$$

$$+ W_{\lambda}^{\dagger} W^{-\lambda} m_{W}^{2} \left(1 + \frac{H}{Y} \right)^{2}$$

$$W, Z \text{ mass term and coupling to Higgs}$$

$$+\frac{1}{2} Z_{\lambda} Z^{\lambda} m_{z}^{2} \left(1 + \frac{H}{Y} \right)^{2}$$

$$+ \left\{ \overline{Y} \frac{i}{2} \gamma^{\lambda} D_{\lambda} \psi + A.c. \right\}$$

$$- \overline{Y} M \psi \left(1 + \frac{H}{Y} \right) \longleftarrow$$
fermion mass term and coupling to Higgs
$$+ \frac{1}{2} \partial_{\lambda} H \partial^{\lambda} H - \frac{1}{2} m_{H}^{2} H^{2} \left[1 + \frac{H}{Y} \right]^{2}$$

$$dynamic term and Higgs self-couplings$$

SM Higgs Production

MANCHESTER

SM+Higgs at Hadron Colliders

- Christian Schwanenberger -

HCPSS 2011, CERN

Se. THE ROYAL SOCIETY

SM Higgs Decays

MANCHESTER **SM+Higgs at Hadron Colliders**

- Christian Schwanenberger -

HCPSS 2011, CERN

Low Mass Higgs Searches

C. SOCIETY

A signal emerging with time

SOCIETY

A signal emerging with time

• expected events:

- $N_{higgs} \sim 25$, $N_{bg} = 960 \pm 30$ - $S/\sqrt{B} = 0.8$
- still no sensitivity to signal
There it is!

 $\int \mathbf{L} dt = 30 \, \mathrm{fb}^{-1}$

Search for $H \rightarrow \gamma \gamma$ Production, Tevatron

MANCHESTER SM+Higgs at Hadron Colliders

- Christian Schwanenberger -

HCPSS 2011, CERN

74 Society

Search for $H \rightarrow \gamma \gamma$ Production, LHC

MANCHESTER

HCPSS 2011, CERN

Se society

High Mass Higgs Searches

Search for $H \rightarrow WW \rightarrow ee$, $e\mu$, $\mu\mu$

Multivariate Analysis Techniques

increase sensitivity by combining many variables to one discriminant for each channel

Search for $H \rightarrow WW \rightarrow ee$, $e\mu$, $\mu\mu$

79

Search for $H \rightarrow WW \rightarrow ee$, $e\mu$, $\mu\mu$

ee+eµ+µµ

exclusion at 95% CL for M_H=165 GeV exclusion in one channel for the first time!

SM Higgs Combination

m_H=165 GeV, 95% CL expected: 0.91×SM observed: 0.75×SM

exclusion at 95% CL for 163 < M_H < 168 GeV exclusion by a single experiment for the first time!

MANCHESTER

- Christian Schwanenberger -

SM Higgs Combination

 $\begin{array}{ll} H \to W^+W^- & 2 \times (0,1 \text{ jets}) + (2 + \text{ jets}) + (\text{low}-m_{\ell\ell}) + (e - \tau_{had}) + (\mu - \tau_{had}) \\ WH \to WW^+W^- & (\text{same-sign leptons } 1 + \text{ jets}) + (\text{tri-leptons}) \\ ZH \to ZW^+W^- & (\text{tri-leptons } 1 \text{ jet}) + (\text{tri-leptons } 2 + \text{ jets}) \end{array}$

CDF Run II Preliminary $H \rightarrow W^+W^-$ Search, L = 7.1 fb⁻¹

exclusion at 95% CL for $158 < M_H < 168$ GeV exclusion by a single experiment for the first time!

Tevatron Combination

exclusion at 95% CL for 158 < M_H < 173 GeV

MANCHESTER New Results for Winter 2011

- Christian Schwanenberger -

Bohr's Lunch Seminar

Search for $H \rightarrow WW \rightarrow ee$, $e\mu$, $\mu\mu$

SM+Higgs at Hadron Colliders - Christian

- Christian Schwanenberger -

HCPSS 2011, CERN

84

SOCIETY 🖉

Global SM Electroweak Fit

Fit: LEP + Tevatron + LHC (H→WW)

MANCHESTER

HCPSS 2011, CERN

Conclusions

- we live in a golden era of particle physics two running colliders: Tevatron & LHC
- high precision measurements in QCD, Electroweak and top quark physics
- → much more to come!
- We know quite a lot already about the Higgs, e.g. the SM Higgs mass is very constrained
- → we still have to find it...
- the next step is to find out if SM is right or wrong
- → many more exciting results are ahead of us!

Backup

 IDEA: recover events that fail criteria in cut-based analyses

MANCHESTER SM+Higgs at Hadron Colliders - Christian Schwanenberger -

* IDEA: recover events that fail criteria in cut-based analyses

MANCHESTER

SM+Higgs at Hadron Colliders

- Christian Schwanenberger -

HCPSS 2011, CERN

 IDEA: recover events that fail criteria in cut-based analyses

MANCHESTER SM+Higgs at Hadron Colliders - Christian Schwanenberger -

SM+Higgs at Hadron Colliders

- Christian Schwanenberger -

HCPSS 2011, CERN

SM+Higgs at Hadron Colliders

MANCHESTER

HCPSS 2011, CERN

92

SM+Higgs at Hadron Colliders

- Christian Schwanenberger -

HCPSS 2011, CERN

SM+Higgs at Hadron Colliders

MANCHESTER.

- Christian Schwanenberger -

HCPSS 2011, CERN

Se society

SM+Higgs at Hadron Colliders

- Christian Schwanenberger -

HCPSS 2011, CERN

C. SOCIETY

SM+Higgs at Hadron Colliders

- Christian Schwanenberger -

C. SOCIETY

Z Boson-Quark Couplings

MANCHESTER

SM+Higgs at Hadron Colliders

- Christian Schwanenberger -

HCPSS 2011, CERN

THE ROYA SOCIETY

 g^u_A

Z Boson-Quark Couplings

Extraction Techniques: Matrix Element

probability densities for every event as function of m_{top}

Future Higgs Projections

1fb-1 cover the full range above ~130, driven by VV modes

1fb-1 cover the full range above ~130, driven by VV modes

Tevatron Preliminary Projection, L=10 fb⁻¹

Forward Backward Asymmetry

new DØ measurement is on its way!

MANCHESTER New Results for Winter 2011 - Chris

- Christian Schwanenberger -

Single Top Quark Production

Multivariate Analyses

103

SOCIETY

HCPSS 2011, CERN

Self-consistency of the SM

W Boson Properties

Width of the W Boson

more W properties:

- charge asymmetry
- g₂ measurement
- asymmetry in $Z \rightarrow ee$
- ...
- all very important measurements
- some will help constraining the W mass

- some will help constraining the PDFs and therefore improving the theory error of the W mass

current Tevatron precision: 2.3%

\rightarrow expect improvements (statistics +systematics) with larger data sets

Multivariate Analyses

Single Top t-channel

Single Top s- vs. t-channel

good agreement with Standard Model

C. SOCIETY
Future Legacy: W mass

HCPSS 2011, CERN

Future Legacy: W mass

~485k events in 1 fb⁻¹

110 DE SOCIETY

b-tagging

- B hadron lifetime τ ~ 1 ps
 B hadron travel
- B hadron travel L_{xv} ~ 3 mm before decay

Lepton+Jets Cross Section with b-tagging

very powerful tool to reduce the background

112

What Mass Do We Measure?

$$\mathcal{L} = \dots - \overline{\psi} M \psi \left(1 + \frac{H}{\nu} \right) \dots$$
• LO QCD: free parameter
$$\mathbf{m}_{top}$$

NLO QCD: dependent on the renormalisation scale M

the concept of quark mass is convention-dependent!

Different Top Mass Definitions

\Rightarrow difference between \overline{MS} and pole mass is \approx 7 GeV...

MANCHESTER SM+Higgs at Hadron Colliders - Christian Schwanenberger -

114

Calibration of the Method

pseudo experiments: compare measured mass with generated correct for differences: calibration curve

• matrix element in LO QCD

• matrix element in LO QCD

parton showers simulate higher orders,

SOCIETY

• matrix element in LO QCD

parton showers simulate higher orders, i.e. not only radiating additional gluons!

• matrix element in LO QCD

parton showers simulate higher orders, i.e. not only radiating additional gluons!

• matrix element in LO QCD

parton showers simulate higher orders, i.e. not only radiating additional gluons!

• matrix element in LO QCD

Important to Know...

Important to Know...

MANCHESTER

- Christian Schwanenberger -

123

Top Cross Section and Mass

SOCIETY