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Summary of lecture 2

� With the help of hadron-parton duality, infrared safety, and

factorization theorems we can use perturbation theory for

collider physics

� The leading kinematical behaviour of the matrix elements is

due to soft and collinear configurations

� In these configurations, the matrix elements factorize

universal kernels

� The simulation of an event typically requires the separation

between large- and small-pT phenomena. The former are

computed exactly, the latter are approximated or modelled



THE PHYSICS OF

EVENT GENERATORS



Plot: T. Sjöstrand

0. Pull out one parton from each of the incoming hadrons
(use PDFs to choose flavour and x)



Plot: T. Sjöstrand

1. Make them collide and produce large-pT stuff
(Hard Subprocess)



Plot: T. Sjöstrand

2. Let quarks and gluons emit other quarks and gluons
(Parton Shower) – small relative pT



Plot: T. Sjöstrand

3. Other partons may undergo the same fate at smaller pT ’s
(MPI + beam remnants ≡ Underlying Event)



Plot: T. Sjöstrand

4. Convert quarks and gluons into physical hadrons
(Hadronization)



1. Hard process. Very well understood, fully perturbative with

no approximations (but typically at the LO only)
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1. Hard process. Very well understood, fully perturbative with

no approximations (but typically at the LO only)

2. Parton shower. Well understood, fully perturbative with

some approximations

4. Hadronization. Not so well understood. Based on models,

with pretty good fits to data. Largely energy-independent,

so extrapolations (e.g. Tevatron −→ LHC) are considered

to be reliable

3. Underlying Event. Poorly understood. Models are not well

constrained by data, and extrapolations are affected by very

large uncertainties



Traditionally, activity in EvG’s was limited to 2 (shower), 3 (UE),

and 4 (hadronization). Step 1 (hard subprocess) was performed at the

lowest order in pQCD.

This has now changed, and I’ll talk about that later.

For the moment, I’ll concentrate on parton showers. Keep in mind that:

A Parton Shower is a way to compute Feynman diagrams to

all order in pQCD, by retaining their dominant contributions

We already know that dominant contributions are associated with soft and

collinear singularities. So now we set out to study them to all orders



Note that, even if one were able to compute exactly quite a lot of Feynman

diagrams (e.g., NLO, NNLO, . . .), the results wouldn’t always be meaningful

pT(W ) ≡ qT(W )

This quantity diverges order-by-order in pQCD at pT (W ) = 0 —
it’s IR sensitive, in spite of being IR safe



Before tackling parton showers, let me stress that the problem of the

sensible generation of the underlying event (and of small-pT stuff in general)

is a serious one, owing to

I its importance for all kind of physics simulations

I the still-poor theoretical understanding of its mechanisms

The process of checking the predictions of and of improving the models

for the underlying event is a constant effort at colliders

There is a lot of ongoing activity on this issue, which I won’t report



Let’s start by ignoring the problem of soft singularities

Collinear kinematics

A N

Θ b

Θ c

a

b

c

z = Eb/Ea ; t = k2
a

Θ = Θb + Θc

=
Θb

1− z
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=
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√
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Work in axial gauges

dσN+1 = dσN

dt

t

dφ

2π
dz

αS

2π
|Kba(z)|2

dσ̄N+1 = dσ̄N

dt

t
dz

αS

2π
Pba(z)

which is the known result

In the phase space, φ can be conveniently identified with the azimuthal
angle between the plane of branching and the polarization of a



It is easy to iterate the branching process (splittings are called branchings in

this context)

a(t) −→ b(z) + c , b(t′) −→ d(z′) + e

dσ̄N+2 = dσ̄N

dt

t
dz

dt′

t′
dz′
(αS

2π

)2

Pba(z)Pdb(z
′)

This is a Markov process, ie a random process in which the probability of

the next step only depends on the present values of the random variables.

In formulae

τ1 < . . . < τn =⇒

P
(
x(τn) < xn|x(τn−1), . . . , x(τ1)

)
= P (x(τn) < xn|x(τn−1))

In our case, the probability of each branching depends on the type of
splitting (g → gg, ...), the virtuality t, and the energy fraction z



Following a given line in a branching tree, it is clear that enhanced
contributions will be due to the strongly-ordered region

Q2 � t1 � t2 � . . . tN � Q2
0

σN ∝ σ0α
N
S

∫ Q2

Q2

0

dt1
t1

∫ t1

Q2

0

dt2
t2

. . .

∫ tN−1

Q2

0

dtN
tN

= σ0
αN

S

N !

(
log

Q2

Q2
0

)N

Denote by

Φa[E, Q2]

the ensemble of parton cascades initiated by a parton a of energy E
emerging from a hard process with scale Q2. Also, denote by

∆a(Q2
1, Q

2
2)

the probability that a does not branch for virtualities Q2
2 < t < Q2

1



With this, it is easy to write a formula that takes into account all the
branches in a branching tree:

Φa[E, Q2] = ∆a(Q2, Q2
0)Φa[E, Q2

0]

+

∫ Q2

Q2

0

dt

t
∆a(Q2, t)

∑

b

∫
dz

αS

2π
Pba(z)Φb[zE, t]Φc[(1− z)E, t]

which has an immediate pictorial representation

a
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b
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Now simply impose that no information is lost during the parton shower:
the sum of all the probabilities associated with the branchings of partons
must be one. Therefore

1 = ∆a(Q2, Q2
0) +

∫ Q2

Q2

0

dt

t
∆a(Q2, t)

∑

b

∫
dz

αS

2π
Pba(z)

which can be solved:

∆a(Q2, Q2
0) = exp

(
−

∫ Q2

Q2

0

dt

t

∑

b

∫
dz

αS

2π
Pba(z)

)

Note

I This Sudakov form factor looks familiar to those who know

resummation techniques

I Some virtual corrections must be included, otherwise unitarity couldn’t

be imposed!

It’s clear that a Sudakov must appear: resummation and parton shower
describe the same physics



Double logs

Keep in mind: this treatment is valid only in the collinear limit. Choices
which affect the behaviour away from this limit are equivalent

For example, the choice of the shower variable t affects the double-log
structure

t ≡ Q2 = z(1− z)θ2E2 (virtuality) =⇒
1

2
log2 t

E2

t ≡ p2
T

= z2(1− z)2θ2E2 (p2
T
) =⇒

1

4
log2 t

E2

t ≡ t̃ = θ2E2 (angle × energy) =⇒ log
t

Λ
log

E

Λ

owing to soft divergences. Note in fact that:

dθ2

θ2
=

dQ2

Q2
=

dp2
T

p2
T

=
dt̃

t̃

So the study of soft emission may give extra information on the proper
choice for t



Soft emissions

Re-use the formulae derived before (with Tp ≡ ~Qp to avoid

confusions with virtuality)

dσ̄N+1 = −dσ̄N

dEi

Ei

dΩi

2π

αS

2π

∑

jk

Tj ·Tk

ζjk

ζijζik

Gluon i has collinear singularities to j and k

ζab =
ka · kb

EaEb

= 1− cos θab

T
2
g = CA , T

2
q = CF

When iterating this formula to the next emission, one gets

I A non-positive definite expression (owing to interference)

I A non-Markovian structure (step 2 depends on step 1 and 0)



� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

i

j

k

Collinear

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

i

j

k

Soft



Manipulate the radiation function

Wjk =
ζjk

ζijζik

= W
[j]
jk + W

[k]
jk

W
[j]
jk =

1

2

(
ζjk

ζijζik

+
1

ζij

−
1

ζik

)

This decomposition has two remarkable properties

I It disentangles the collinear singularities i ‖ j and i ‖ k

I It has angular ordering

∫ 2π

0

dφijW
[j]
jk =

{
1/ζij ζij < ζjk

0 ζij > ζjk

Angular ordering is a manifestation of (destructive) interference effects
present in gauge theories – eg in QED



The radiation of a soft gluon is confined in the cone defined by the two

partons that “exchange” the gluon



This is how one can depict it:

Allowed Suppressed

Remember the general property of soft-gluon emissions:

Â(n+1)(. . . kk, k, kl, . . .)
k→0
−→ g2

(
kl · ε

kl · k
−

kk · ε

kk · k

)
Â(n)(. . . kk, kl, . . .)

In this case, there is a unique colour flow at the Born level, hence this

property applies to the whole amplitude



The radiation of a soft gluon is confined in the cone defined by the two

partons that “exchange” the gluon

This looks like a frame-dependent statement, but it is not

In the rest frame of the emitting dipole, the emitters are back to back, and

the gluon can be emitted at any angle

Now if a boost is performed, the emitters and the gluon will all be squeezed

in the boost direction

This is equivalent to considering a soft emission in the boosted frame,

where the angle between the two emitters is small



Angular ordering implies that after azimuthal average we have

dσ̄N+1 = −dσ̄N

dEi

Ei

αS

2π

∑

jk

2Tj ·Tk

∫ ζjk

0

dζij

ζij

This looks promising: may be interpreted as

. . . −→ j + k ; j −→ i + j ′ . . .

The process is fully symmetric in j ←→ k

In order to study the emission pattern in more details, we must at least
consider the next branching



Consider the emission of a soft gluon from the colour sin-

glet formed by the three partons i, j and k

The radiation pattern will be obtained by attaching a soft

gluon to the three external legs i, j, k

Wijk = −Ti ·TjWij −Tj ·TkWjk −Ti ·TkWik

Assuming that θmk � θij one gets

Wijk = T
2
i W

[i]
ij + T

2
jW

[j]
ij + T

2
kW

[k]
km + T

2
mW

[m]
km Θ(θmg > θij)

I Inside the cone (ij), the gluon is emitted by two independent

charges T
2
i and T

2
j

I Outside of this code, the gluon cannot resolve i and j, and only

”sees” T
2
m = (Ti + Tj)

2

=⇒ A Markov structure has emerged: (ijk) ≡ ((i + j)k) + (ij)



Indeed, we can obtain

Wijk = T
2
i W

[i]
ij + T

2
jW

[j]
ij + T

2
kW

[k]
km + T

2
mW

[m]
km Θ(θmg > θij)

as a two-step branching process. First, attach the soft gluon to
the pair (mk), ie

T
2
kW

[k]
km + T

2
mW

[m]
km

Note that m is on shell!. Next, after the branching m→ ij with θij < θmg,
attach the soft gluon to the pair (ij), ie

T
2
i W

[i]
ij + T

2
jW

[j]
ij

θ
θ

θ

1

2

3

Angular ordering

θ1 > θ2 > θ3



We have therefore obtained that, after an azimuthal average, soft emissions

can be treated as a Markov process with probability

dPi = 2T2
i

αS

2π

dζ

ζ

dEi

Ei

with the pre-factor of 2 coming from the symmetrization over eikonals in

the original formula

Defining z such that

dEi

Ei

=
dz

z

one observes that 2T2
i /z is the leading-soft behaviour of the relevant

Altarelli-Parisi kernel. This is all we need to guess the branching probability

which describes soft and/or collinear emissions



Coherent branching

What done above can be combined with the collinear branching stuff. One

arrives at a coherent branching formalism, which correctly incorporates

collinear and soft enhancements to all orders

The most straightforward approach it that of replacing the shower variable

t with ζ = 1− cos θ, and impose ζn+1 < ζn. Iterated cross section formulae

now read

dσ̄N+1 = dσ̄N

dζ

ζ
dz

αS

2π
Pba(z)

In practice, to take into account emission from non-zero-mass lines, it’s

more convenient to use as shower variable for a→ bc (HERWIG)

Q2
a = E2

aζa ; ζa > ζb =⇒ Q2
b < z2

bQ
2
a

There are non-accessible kinematic regions (dead zones)



Coherence can be seen in data

Note that coherence reduces the multiplicity wrt to what one would get
from fully incoherent radiation



Parton showers are based on a probabilistic and Markovian interpretation

of the branching process

Soft emissions are neither positive-definite, nor Markovian, which implies

the necessity of non-trivial manipulations in order to be able to take them

correctly into account, via angular ordering

It must be kept in mind that angular ordering is exact only

after azimuthal integration

The simplicity of the case seen so far hides the fundamental question:

which is the angle that defines the radiation cone?



Suppose one wants to emit a gluon from leg #1:

1

2

3

4

Should one impose θg1 ≤ θ12, or θg1 ≤ θ13, or θg1 ≤ θ14?

To find the answer, one should keep in mind that at the amplitude level,

the dominant contributions are determined by the colour connections of

dual amplitudes, and that dual amplitudes are orthogonal at the leading

order in N

Hence, the pattern of radiation is driven by the colour connections present

in the process before the radiation takes place



Therefore, one draws the colour flow:

Quark #1 is colour-connected with quark #3, hence the radiation

will be limited by θ13

I The picture is valid at the leading order in N . It works fairly well

I A gluon has two colour parterns – choose one of them at random

I In the case of processes with several colour flows, one of them is picked

at random, using N →∞ weights



Different choices of variables led to:

HERWIG(++) PYTHIA/SHERPA ARIADNE

t ' angle t = virtuality t = p2
T

hardest not first hardest first hardest first

coherent coherence forced coherent

dead zones no dead zones no dead zones

ISR easy ISR easy ISR difficult

kinematics: difficult kinematics: easy kinematics: easy

cluster hadr string/cluster hadr string hadr

Since 2006 PYTHIA has also pT -ordered evolution (PYTHIA8 is only

pT -ordered). SHERPA will also abandon virtuality order



Summary of Event Generators

0) Start from a leading order hard subprocess

1) Let initial- and final-state partons branch

2) Iterate 1) (ie shower) till reaching a small scale Q0

3) For final-state partons, use a model to convert partons into

hadrons; for initial-state partons, force further branchings

till valence flavours are generated, and fold with f(x,Q0)

4) Add low-pT stuff (underlying event, ...)



Given the approximations involved, it is sort of surprising that Event

Generators work amazingly well

Sooner or later, however, they will run out of steam

The probability that this happens at the LHC is, unfortunately,
not negligible



Plot: M. Mangano

LHC physics is a multi-jet

physics

New-physics signal may eas-

ily have 5-10 jets (e.g. fully

hadronic SUSY Higgs, T →

tW , heavy sparticle pair pro-

duction, ...)

I MCs are simply unable to reliably simulate these multi-jet events

I The reason behind this failure is obvious. The parton shower is

inherently collinear. The probability associated with well-separated

final-state particles is largely underestimated



The message is then:

� At the LHC, standard MCs are either incapable of describing hard

processes, or they do so at the price of rendering it impossible the

study of uncertainties
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The message is then:

� At the LHC, standard MCs are either incapable of describing hard

processes, or they do so at the price of rendering it impossible the

study of uncertainties

� In the context of a reliable computation, the assessment of the

theoretical uncertainty is a well defined procedure

� Hence, what one should do is to give MCs more predictive power.

This should not and will not turn them into discovery tools,

but will rather help:

I Obtain state-of-the-art simulations of backgrounds

I Reduce theory bias on search strategies

I Better discriminate among BSM scenarios



MCs: always keep in mind

Parton Shower Monte Carlos are very flexible, essential tools

for experimental physics. But:

� Each emission in a shower is based on a collinear

approximation; matrix elements are leading order

� No K factors, no hard emissions

� Very good in peak regions, ie the bulk of the cross section

� Fairly poor in large-pT tails, ie rare events



It is left to you to determine
whether you are using an MC
outside the range of validity of
its approximation. It is a very
common mistake to abuse of
this freedom


