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Goals
• For theorists (and experimenters):

• What is it these experimenters do?

• (Except for using fancy equipment to build fancy detectors...)

• How come it takes them forever to release a result?

• Why can’t they just give us the 4-vectors as they record 
the data?

• What can(’t) they look for?

• For experimenters:

• Why does it take so many layers of review to get a result 
out?     My analysis seems pretty simple at first sight....
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HEP in 2011
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In Words
• Matter is built of spin 1/2 particles that interact by 

exchanging 3 different kinds of spin 1 particles 
corresponding to 3 different (gauge) interactions

• There appear to be 3 generations of matter particles

• The 4 different matter particles in each generation carry 
different combinations of quantized charges characterizing 
their couplings to the interaction bosons

• The matter fermions and the weak bosons have “mass”

• Gravitation is presumably mediated by spin 2 gravitons

• Gravitation is extremely weak for typical particle masses

• There appear to be 3 macroscopic dimensions
4
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About the Standard Model
• It’s a theory of interactions:

• Properties of fermions are inputs

• Properties of interaction bosons in terms of couplings, 
propagations, masses are linked:

• Measuring a few allows us to predict the rest, then measure and 
compare with expectation

• It’s remarkably successful:

• Predictions verified to be correct at sometimes incredible 
levels of precision

• After ~30 years, still no serious cracks
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Precision Results
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muon g-2: 0.7 ppm!

B, K physics
LEP, SLD & Tevatron
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Many Fundamental Questions
• What exactly is spin? Or color?  Or electric charge?  

Why are they quantified?

• Are there only 3 generations?  If so, why?

• Why are there e.g. no neutral, colored fermions?

• What is mass?  Why are particles so light?

• Is there a link between particle and nucleon masses?

• How does all of this reconcile with gravitation?  
How many space-time dimensions are there really?

• ...
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The Plot
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Vector Boson Scattering
• There is in fact one known problem with the 

Standard Model:

• If we collide W’s and/or Z’s (not so easy...), the scattering 
cross-section grows with the center of mass energy, and 
gets out of control at about 1.7 TeV

• This is similar to “low” energy neutrino scattering:

• If q2 << (MW)2, looks like a “contact                                  
interaction”, and cross-section grows                            
with center of mass energy

• But when  q2 ≈ (MW)2, W-boson                                             
propagation becomes visible, and “cures” this problem
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The Higgs Boson
• One way to solve this, is to introduce a massive, 

spinless particle (of mass < ~1 TeV)

• Couplings to W and Z are fixed, quantum numbers are 
known...

• .... to be those of the vacuum

• Its mass is unknown, and its couplings to the fermions are 
unknown....  well, maybe

• Fermions can acquire mass by coupling to this Higgs boson, so 
their couplings could be proportional to their masses.  This is 
called the “Standard Model Higgs”
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Precision Measurements
• In fact, we can say something 

about the standard model 
Higgs mass

• If the fermions get their masses 
from the Higgs, we know all 
couplings and can infer the 
Higgs  mass from precision 
measurements

• Result is very sensitive to 
measured top quark, W boson 
masses

• Really wants a “light” Higgs boson
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Higgs Drawbacks
• In principle, with the addition of a Higgs boson 

around 150 GeV particle physics could be 
“complete”

• Like Mendeleev’s table for chemistry

• But by itself, the Higgs is very unsatisfactory:

• Why are the couplings to the fermions what they are?

• Dumb luck (aka landscape)?

• What is the link to gravity?

• Why does the Higgs break the symmetry?

• Why are there 3....?
12
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The Plot Thickens
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Higgs Mass
• Higgs, in fact, also 

acquires mass from 
coupling to W’s, 
fermions, and itself!

• These “mass terms” are 
quadratically divergent

• Drive mass to limit of 
validity of the theory

• So we expect the Higgs 
mass to be close to the 
scale where new physics 
comes in....  
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Unravelling the Mystery
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Hunting for Answers
• Get more information

• Measure particles and their interactions in detail

• Precision measurements

• Observe new particles or interactions

• Search in new areas in “phase space”

• Find the underlying pattern(s)

• Hypothesize, build models

• Internally consistent?  Consistent with data?

• Suggestions on where to look

16

Experim
ent          T

heory



Gustaaf Brooijmans CERN 2011

Where to Start?
• BSM physics must couple to SM (weakly?), but is it

• “SM-like”?  

• Does it have new massive particles decaying to electrons, 
muons, quarks,...?

• Quasi “SM-like”?

• Same but includes some new long-lived particles in the decay 
chain... (dark matter candidate)

• No new “particles” in reach

• Hidden or too heavy or.... don’t exist

• Are there new interactions?

17
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So....
• Go look where the SM breaks down (high energy)...

• ... or for subtle anomalies

• Assume new physics manifestations lead to 
anomalous production of SM particles

• Resonant or not (and maybe in loops only)

• Short-lived or less so

• Rely on guidance from models to some extent

• What are implications of known constraints?   What 
signatures are “allowed”?

• Some scenarios do require new approach
18
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The Tools
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Colliders
• Currently, hadron colliders:

• High energy implies probing of short distances, and 
production of other, massive particles

20

7 - 14(?) TeV center of mass 
energy

2 TeV center of mass 
energy



Gustaaf Brooijmans CERN 2011

Hadron Colliders
• Incoming longitudinal momentum not known: 

• “Hard interaction” is between one of the quarks and/or gluons 
from each proton, other quarks/gluons are “spectators”

• Longitudinal boost “flattens” event to a pancake

• We usually work in the plane transverse to the beam
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ATLAS
• Make best possible measurement of all particles 

coming out of collisions
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Tracking
• Combination of pixels, silicon strips (“SCT”) and 

straw tube transition radiation tracker (TRT)
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Calorimetry
• Liquid Argon & Pb accordion 

(EM & forward)

• Scintillator & Pb (hadronic)
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Muons
• Air-core toroids

• Makes ATLAS big
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Neutrinos*
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Detecting Particles
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Anecdotes From the Field (I)
• DØ’s “ring of fire”

• Noise in a few “eta rings”

• Occurred on rare occasions

• Originally thought to be a 
ground fault in HV 
distribution

• Found to be concurrent 
with welding in building

• Finally traced to liquid 
Argon purity & temperature 
monitoring 
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The Work
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Steps in a Physics Search
• What is the final state? ⇒ “Preselection”

• Sufficiently loose to be signal-poor

• Prove you understand the detector response, physics processes 
contributing

• But sufficiently tight to have a manageable data volume

• ATLAS/CMS write 200-400 Hz × 1+ MB/event = 200-400+ MB/s

• “4-vectors” is not enough, need some amount of detector info

• In practice, often have preselected sample for frequent analysis, + 
looser sample for e.g. multijet background with rare passes

• Note that data volume ~ running time, not ∫L
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Steps (II)
• Determine preselected sample’s composition

• MC and data to understand each contribution

• QCD multijet background to leptons often extracted from data: 
rejection factor ~10-4, difficult for simulation to be that accurate

• MC for most other processes, with corrections from data, since 
generators are LO or NLO

• Also need to correct MC for real-life data conditions

• Different alignment, small fraction of dead channels etc.

• As statistics increase, more difficult, since mis-modelings 
not hidden by large statistical uncertainties anymore
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Anecdotes From the Field (II)
• Everybody wants experimenters to produce results fast

• Lots of pressure in the early days of LHC...

• Only jets, background composition “easy”

32
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Anecdotes From the Field (II)
• Everybody wants experimenters to produce results fast

• Lots of pressure in the early days of LHC...
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GEANT bug
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Anecdotes From the Field (II)
• Everybody wants experimenters to produce results fast

• Lots of pressure in the early days of LHC...

• Sometimes, it’s better to take the appropriate time to 
investigate

34

GEANT bug

Cosmics
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A Challenging Search:
The Higgs Hunt at the Tevatron

35
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Producing Higgses
• Tevatron experiments currently have ~10 fb-1 of data 

on tape

• (Data taking efficiency is ~90%)

36

10000 events
(x many 
efficiency 
factors)
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Higgs Decay

37

Low Mass
H → bb

High Mass
H → WW
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Search Channels
• Hadron colliders

• bb production ~9 orders of 
magnitude larger than H

• gg → H → bb swamped

➡ At low mass look for pp → 
WH or ZH → W/Z bb

• With leptonic W, Z decay, so # 
of events /~50!

• At high mass,  gg → H → WW 
accessible if at least one W decays 
leptonically

38
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Dilepton + MET
• “Golden” channel:

• Main background Z → ll also a great reference signal

• “Easy” to suppress using MET, angle between leptons, ...
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Angles
• In Z → ll (and dijets faking leptons), leptons 

preferentially emitted back-to-back

• In Higgs decays, W+W- spins back-to back, so charged 
leptons in similar direction!  (One LH, other RH)

• In Z, smallest transverse mass tends to be small

40

Spins
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Preselection

41

ee, all cuts
except MET

eµ, all cuts
except Δφ
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Multivariate Tools
• After preselection, S/B not good (~1/30, 1/50, 

1/1000 in eμ, ee and μμ final states)

• Use multivariate tools to exploit correlations 
between observables for S ↔ B discrimination

• In the dilepton + MET (H → WW → lνlν), use 
neural nets

• MC samples divided in 2 for training/testing

42
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Variables

43

Only accept variables that are well-modeled!
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NN Outputs

44



Gustaaf Brooijmans CERN 2011

Systematics Profiling
• Systematic uncertainties are propagated through the 

full analysis chain to the NN output distribution

• E.g. we repeat the analysis with jet energy scale shifted up 
& down by 1σ

• Some systematic uncertainties affect shape (jet 
reconstruction efficiency, energy scale and resolution, 
boson pT distributions), others only normalization (lepton 
reconstruction efficiencies and momentum calibration, 
modeling of multijet background, theoretical cross-sections 
and luminosity)

• Systematic uncertainties are treated as nuisance parameters
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Systematics Profiling
• Nuisance parameters tend to be correlated, but not 

100%, among backgrounds

• Can affect rates, shapes, or both (in any distribution), and 
often asymmetric and non-gaussian

46

Toy Example
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• Can generate pseudo-experiments (events in bins 
according to poisson), then for each experiment vary 
nuisance parameters

• Variations in background  (& S+B) prediction

• Compare results to data using log-likelihood ratio

• So we can maximize likelihood ratio as a function of 
nuisance parameters → constraint them

• I.e. use full shape of distribution(s) to see which 
background uncertainties are over/underestimated

• Of course limited to size of statistical fluctuations

• Can remove bins with large S/B if needed

• Mostly important if uncertainties lead to similar shape distortions
47
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• Test example:

• Data constructed to disagree with background-only 
hypothesis (wrong estimates for background uncertainties)

• But to agree with background-only better than signal+ 
background

• Improvement quite spectacular (but by construction)

48
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Dilepton + MET Result
• Present result as a 95% C.L. limit in units of the SM 

Higgs production x-section

49

Phys. Rev. Lett. 104, 061804 (2010)
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Wjj and the Higgs
• The final state consisting of W + 2 jets is critical

• At low mass (WH, H→bb), they’re b-jets with mbb = mH

• At high mass (H→WW), mjj = mW, mWW = mH

• But dijet mass resolution is so-so:

50

And lots more 
background!
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Sample Composition
• After preselection, low S/B allows to verify shapes of 

dominant backgrounds

• For WH, first before b-tagging, then with 1 tag

• Determining the sample’s composition

• I.e. which processes contribute, and how

• Diboson from MC simulation (usually small, + “trust” MC)

• Top from simulation (relatively small @ Tevatron)

• Z+jets from data & MC (“easy” to get a clean sample, correct MC)

• QCD multijet from data (no choice)

• W + jets from MC, but ....

51
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Generators Used
• We use four kinds of Monte Carlo generators

• “Calculators” (often NNLO) do not actually generate events, 
they just calculate some (limited) distributions, like W pT

• Traditional 2 → 2 generators: LO, e.g. qq → WZ

• Include parton shower, i.e. QCD radiation, and hadronization to jets

• “Matrix Element” 2 → n (n < 9): LO, e.g. qq → eνjjjj

• Necessary to generate events with multiple hard jets

• Require matching to parton shower to avoid double counting

• NLOwPS 2 → 2 generators: include NLO corrections

• I.e. in a sense they are 2 → 2 & 3 with virtual corrections
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Correction Factors
• Of course, the ME’s are LO, so “K-factors” needed

• Different ones for heavy flavor etc.....  convention to 
avoid confusion.... 

53

In addition to W/Z p
T  reweighting
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Anecdotes From the Field (III)
• Pile-up events (“minimum bias”) 

do produce jets

• At high L, require that tracks 
pointing to jets originate from 
same vertex as lepton

• High η excess disappeared!

• Eta-dependence of jet-vertex 
match turns out to have shape very 
very similar to excess

• After correcting for this, excess is 
back....
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So...
• After all K/K’/S/HF-factors and  

boson pT reweighing:

• Similar angular differences between 
generators: reweigh alpgen to sherpa

55

! arXiv:0706.2569

Alpgen, MadEvent, 
Helac with MLM,

Sherpa and Ariadne
with CKKW 

matching
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Z (→ll) + jets
• Can get a clean sample, check if our simulation reproduces 

the data

56

⇒ yes, with

~expected
deviations

Need 
reweighing

of MC
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Anecdotes From the Field (III) 
• CDF searched for WW/WZ in lνjj

• The background here is not SM, it is uncorrected alpgen!!

• But this is not the issue.....

57

Phys.Rev.Lett.106:171801
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All Channels, CDF + DØ

• Low mass a struggle!

58

129 Channels!!
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So, Physic Analysis
• Start from:

• “How well do we understand data and the SM?”

• How confident are we in corrections we apply?  

• Given that:

• Which measurements can we make?

• What do we need to do to improve our understanding?

• Balance the work!

• Early, low background searches

• Detailed understanding/verification of SM predictions

59

Complementary measurements!
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