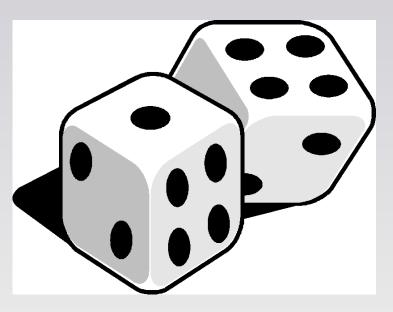


Statistics In HEP 2

How do we understand/interpret our measurements



Helge Voss

- Maximum Likelihood fit
- strict frequentist Neyman confidence intervals
 - what "bothers" people with them
- Feldmans/Cousins confidence belts/intervals
- Bayesian treatement of 'unphysical' results
- How the LEP-Higgs limit was derived
- what about systematic uncertainties?
 Profile Likleihood

Parameter Estimation

want to measure/estimate some parameter θ

e.g. mass, polarisation, etc..

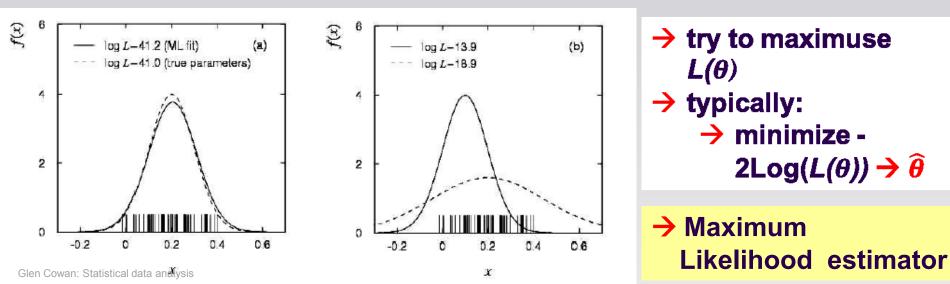
observe: x
ⁱ = (x₁,...,x_n)_i i = 1, K

e.g. n observables for K events

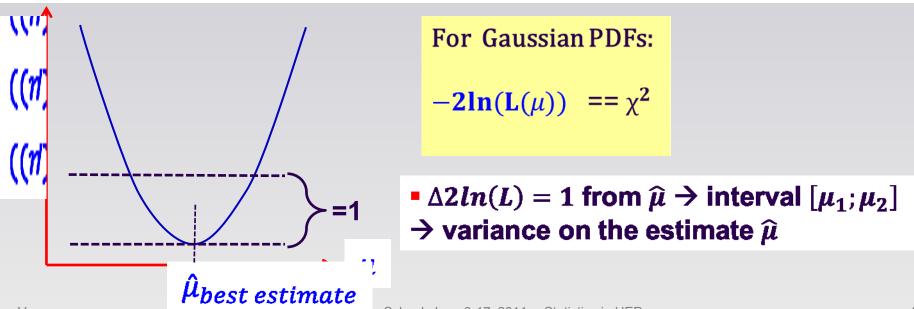
"hypothesis" i.e. PDF P(x
; θ) - distribution x

for given θ
e.g. diff. cross section
→ K independent events: P(x
¹,..,x^K; θ) = Π^K_i P(x
ⁱ; θ)

• for fixed \vec{x} regard $P(\vec{x}; \theta)$ as function of θ (i.e. Likelihood! $L(\theta)$) • θ close to $\theta_{true} \rightarrow$ Likelihood $L(\theta)$ will be large



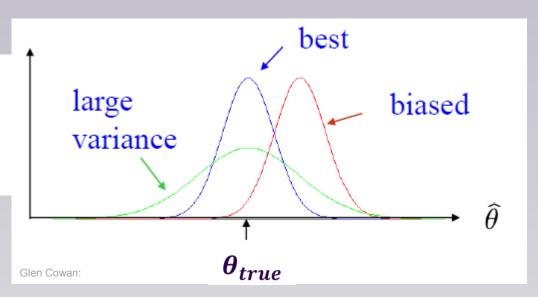
- <u>example:</u> PDF(x) = Gauss(x, μ,σ) $\rightarrow L(x|Gauss(\mu)) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$
- \rightarrow estimator for μ_{true} from the data measured in an experiment x_1, \dots, x_K
- → full Likelihood $L(x|\mu) = \prod_{i=1}^{K} \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x_i \mu)^2}{2\sigma^2}\right)$
- → typically: $-2\ln(L(x|\mu)) = \sum_{i}^{K} \frac{1}{\sqrt{2\pi\sigma}} \left(\frac{(x_i \mu)^2}{2\sigma^2} \right)$ Note: It's a function of μ !



Parameter Estimation

properties of estimators

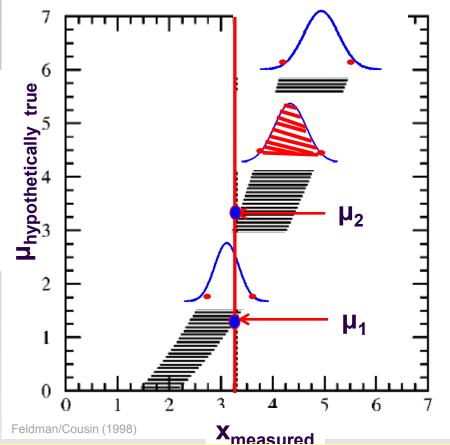
biased or unbiased
 large or small variance
 → distribution of ô on many measurements ?



- Small bias and small variance are typically "in conflict"
 Maximum Likelihood is typically unbiased only in the limit K → ∞
 - If Likelihood function is "Gaussian" (often the case for large K → central limit theorem)
 - → get "error" estimate from or $-2\Delta log(L) = 1$
 - \rightarrow if (very) none Gaussian
 - \rightarrow revert typically to (classical) Neyman confidence intervals

Classical Confidence Intervals

another way to look at a measurement rigorously "frequentist"
Neymans Confidence belt for CL α (e.g. 90%)



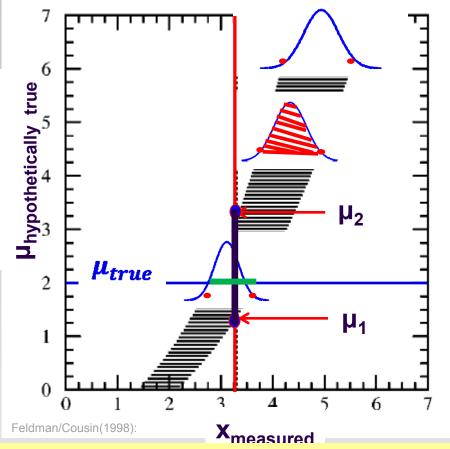
- each µ_{hypothetically true} has a PDF of how the measured values will be distributed
- determine the (central) intervals ("acceptance region") in these PDFs such that they contain α
- do this for ALL µ_{hyp.true}
- connect all the "red dots" → confidence belt

• measure x_{obs} : \rightarrow conf. interval =[$\mu_{1,} \mu_{2}$] given by vertical line intersecting the belt.

• by construction: for each $x_{meas.}$ (taken according PDF(μ_{true}) the confidence interval [$\mu_{1,}$ μ_{2}] contains μ_{true} in α = 90% cases

Classical Confidence Intervals

another way to look at a measurement rigorously "frequentist"
Neymans Confidence belt for CL α (e.g. 90%)



 \rightarrow conf.interval =[μ_1, μ_2] given by vertical line intersecting the belt. by construction: $P(x < x_{obs}; \mu_2) = \frac{1-\alpha}{2}$ • $P(x > x_{obs}; \mu_1) = \frac{1-\alpha}{2}$ if the true value were μ_{true} \rightarrow lies in $[\mu_1, \mu_2]$ if it intersects \rightarrow x_{meas} intersects — as in 90% (that's how it was constructed) \rightarrow only those x_{meas} give $[\mu_1, \mu_2]$'s that intersect with the --- \rightarrow 90% of intervals cover μ_{true}

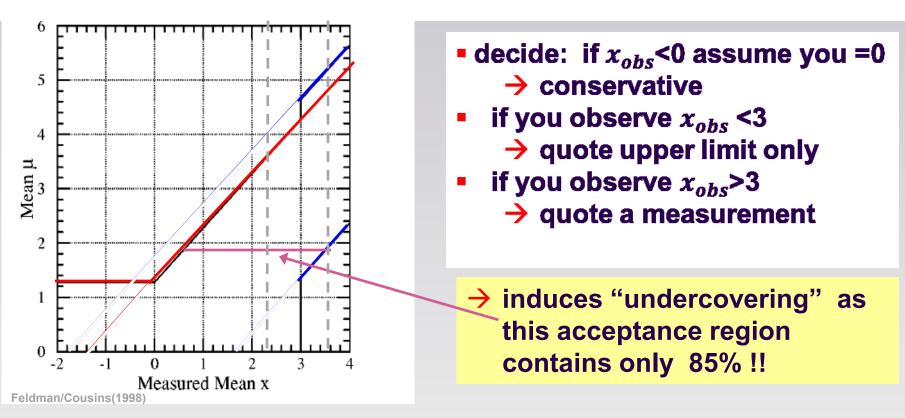
• $P(x; \mu)$ is Gaussian ($\sigma = const$) \rightarrow central 68% Neyman Conf. Intervals \Leftrightarrow Max. Likelihood + its "error" estimate $[\hat{x} - \sigma_{\hat{x}}; \hat{x} + \sigma_{\hat{x}}]$

Flip-Flop

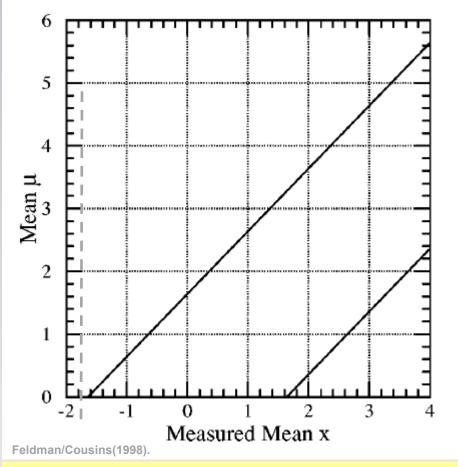
When to quote measuremt or a limit!

• estimate Gaussian distributed quantity μ that cannot be < 0 (e.g. mass)

- same Neuman confidence belt construction as before:
 - once for measurement (two sided, each tail contains 5%)
 - once for limit (one sided tails contains 10%)



same example: • estimate Gaussian distributed quantity μ that cannot be < 0 (e.g. mass)



- using proper confidence belt
 assume: x_{obs} = −1.8
 → confidence interval is EMPTY!
 - Note: that's OK from the frequentist interpretation
 μ_{true} ∈ [conf.interv.] in 90%
 of (hypothetical) measurements.

Obviously we were 'unlucky' to pick one out of the remaining 10%

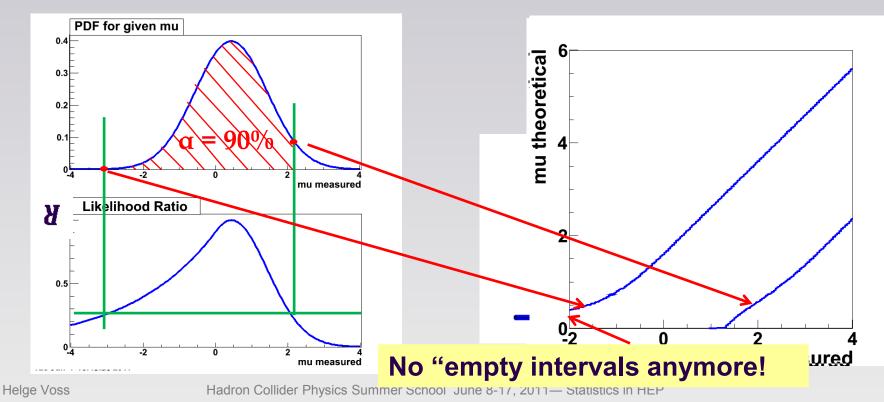
nontheless: tempted to "flip-flop" ??? tsz .. tsz.. tsz..

Feldman Cousins: a Unified Approach

How we determine the "acceptance" region for each μ_{hyp.true} is up to us as long as it covers the desired integral of size α (e.g. 90%)
 → include those "x_{meas.}" for which the large likelihood ratio first:

$$R = \frac{L(x_{meas} | \mu_{measured})}{L(x_{meas} | \mu_{best \ estimate})}$$

• $\mu_{best \, estimate}$ here: either the observation x_{meas} or the closes ALLOWED μ

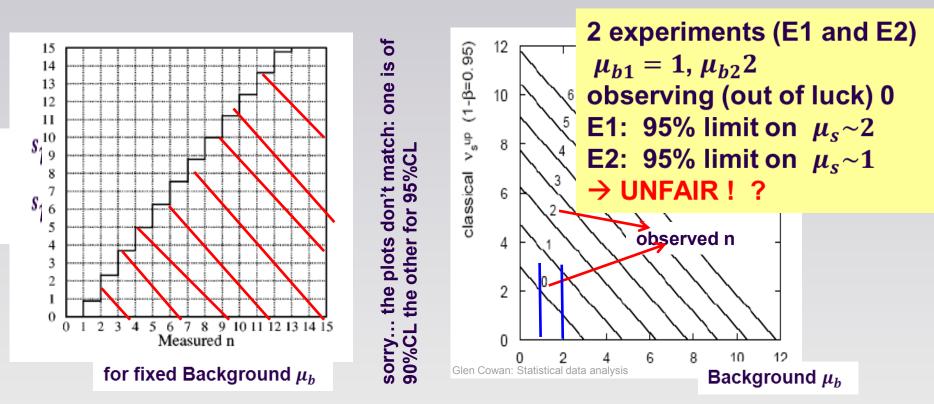


Being Lucky...

• give upper limit on signal μ_s on top of know (mean) background μ_b • \rightarrow n=s+b from a possion distribution

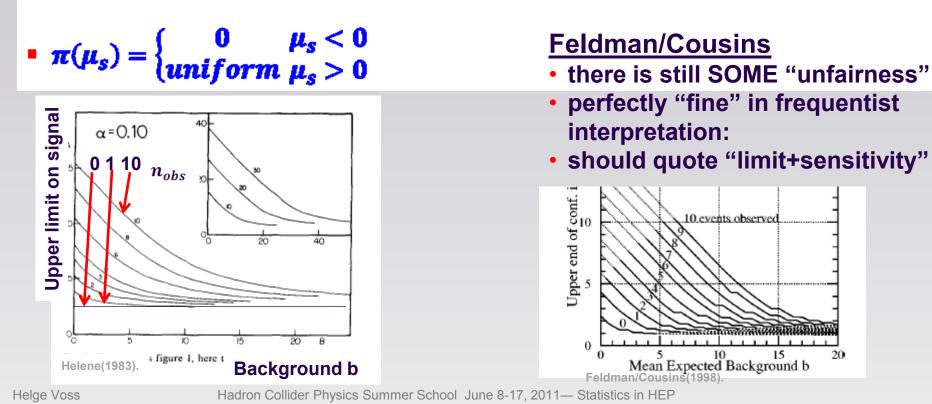
$$P(n) = Poisson(n, \mu_s + \mu_b)$$

- Neyman: draw confidence belt with
 - " μ_s " in the "y-axis" (the possible true values of μ_s)



Being Lucky ...

- Feldman/Cousins confidence belts
 motivated by "popular" 'Bayesian' approaches to handle such problems.
- **Bayesian:** rather than constructing Confidence belts: • turn Likelihood for μ_s (on given n_{obs}) into Posterior probability $on \mu_s$ *i.e* $Poisson(n_{obs}; \mu_s + \mu_b)$
- $p(\mu_s|n_{obs}) = L(n_{obs};\mu_s) * \pi(\mu_s)$ add prior probability on "s":



Statistical Tests in Particle Searches

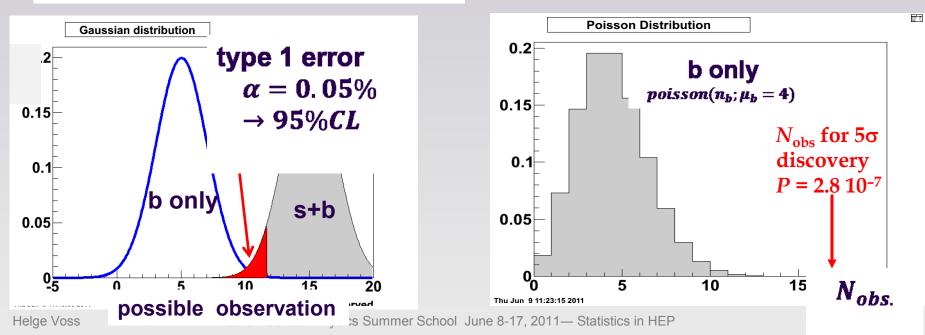
13

exclusion limits

- upper limit on cross section
 - (⇔lower limit on mass scale)
- (σ < limit as otherwise we would have seen it)
- need to estimate probability of downward fluctuation of s+b
- try to "disprove" H₀ = s+b
- better: find minimal s, for which you can sill exclude H₀ = s+b a prespecified Confidence Level

discoveries

- need to estimate probability of upward fluctuation of b
- try to disprove H₀ = "background only"



Which Test Statistic to used?

HADRON COLLIDER PHYSICS SUMMER SCHOOL

s+b

15

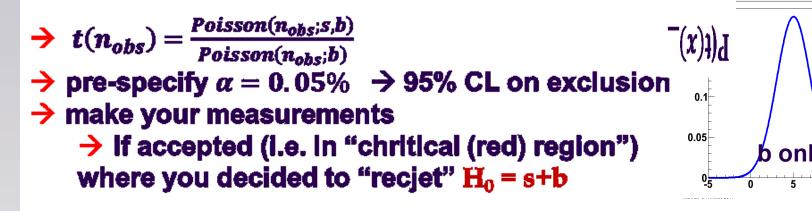
10

ussian distribution

exclusion limit:

 test statistic does not necessarily have to be simply the counted number of events:

→ remember Neyman Pearson → Likelihood ratio

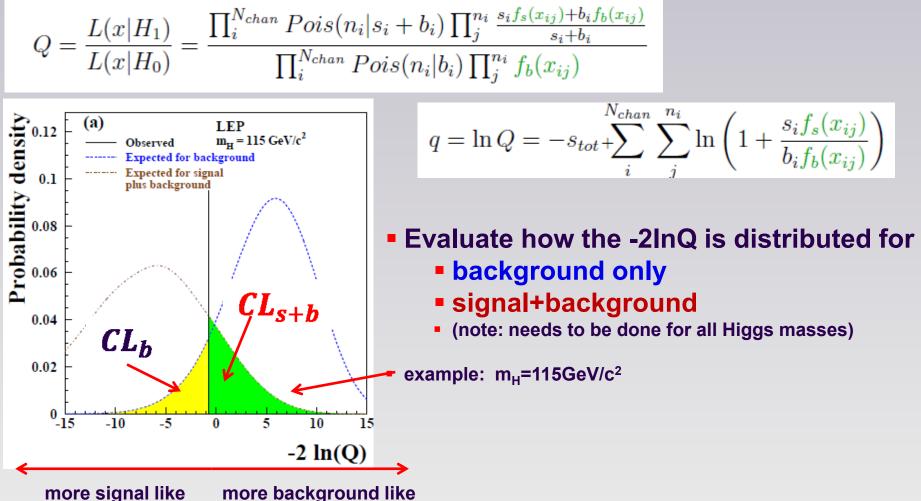


$$\Rightarrow CL_{s+b} = P(t < t_{obs})$$

→ (i.e. what would have been the chance for THIS particular measurement to still have been "fooled" and there would have actually BEEN a signal)

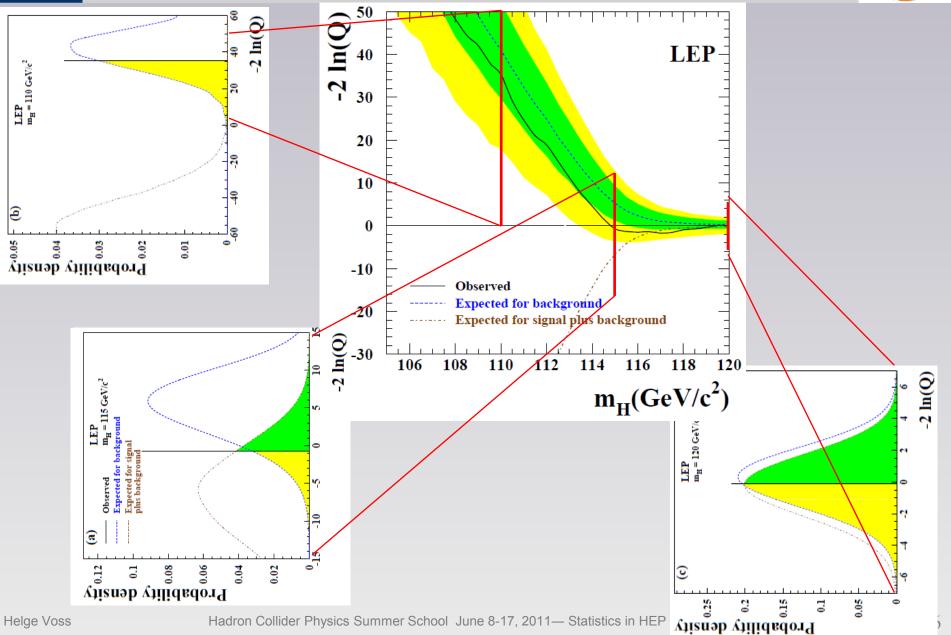
Example :LEP-Higgs search

Remember: there were 4 experiments, many different search channels → treat different exerpiments just like "more channels"



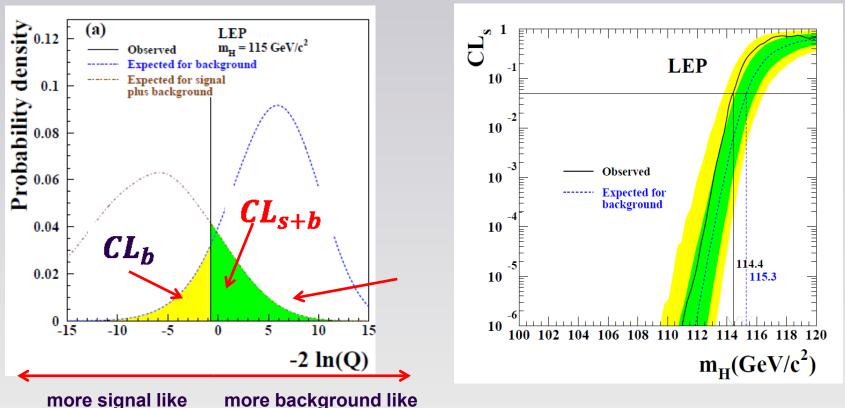
Helge Voss

Example: LEP SM Higgs Limi



Example LEP Higgs Search

- In order to "avoid" the possible "problem" of Being Lucky when setting the limit
- rather than "quoting" in addition the expected sensitivity
- weight your CLs+b by it:



- standard popular way: (Cousin/Highland)
 - integrate over all systematic errors and their "Probability distribution)
 - → marginalisation of the "joint probability density of measurement paremters and systematic error)

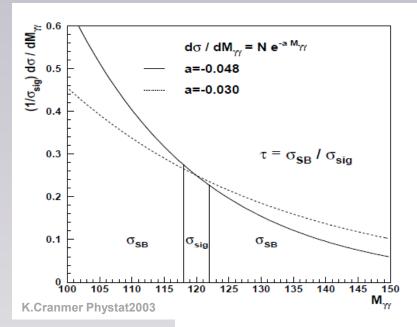
! Bayesian **!** (probability of the systematic parameter)

- "hybrid" frequentist intervals and Bayesian systematic
- has been shown to have possible large "undercoverage" for very small p-values /large significances (i.e. underestimate the chance of "false discovery" !!
- LEP-Higgs: generaged MC to get the PDFs with "varying" param. with systematic uncertainty
 → essentiall the same as "integrating over" → need probability density for "how these parameters vary"

Systematic Uncertainties

• Why don't we:

include any systematic uncertainly as "free parameter" in the fit



- eg. measure background contribution under signal peak in sidebands
- measurement + extrapolation into side bands have uncertainty
- but you can parametrise your expected background such that:
 → if sideband measurement gives this data → then b=...

Note: no need to specify prior probability

$$\underline{P(n_{\text{on}}, n_{\text{off}}|s, b)} = \underbrace{\operatorname{Pois}(n_{\text{on}}|s+b)}_{\text{Ois}(n_{\text{off}}|\tau b)} \underbrace{\operatorname{Pois}(n_{\text{off}}|\tau b)}_{\text{Ois}(n_{\text{off}}|\tau b)}$$

joint model

 ${
m main\,measurement}$

 $_{\rm sideband}$

Build your Likelynood function such that it menudes.

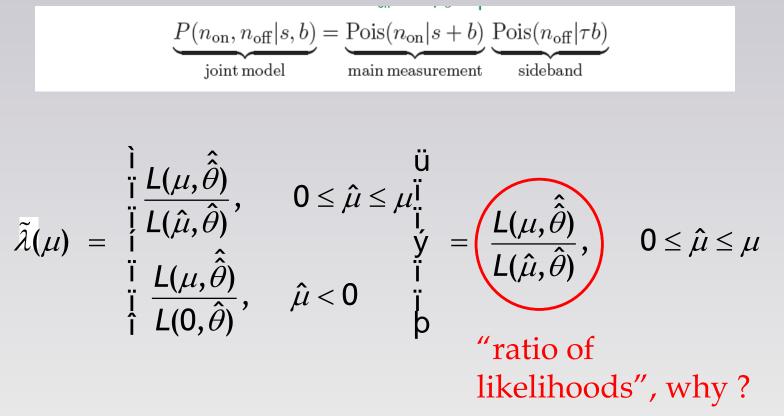
- your parameters of interest
- those describing the influcene of the sys. uncertainty
 nuisance parameters

Helge Voss

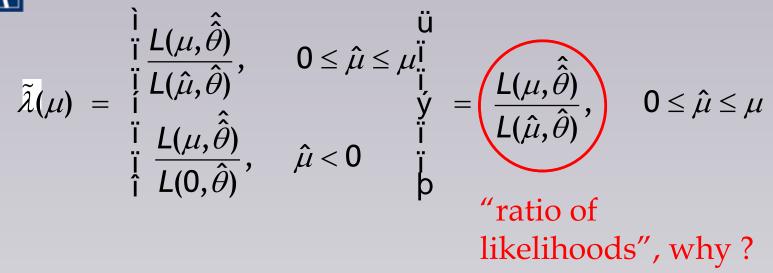
Nuisance Parameters and Profile Liklihood

Build your Likelyhood function such that it includes:

- your parameters of interest
- those describing the influcene of the sys. uncertainty
- → nuisance parameters



Profile Likelihood



Why not simply using $L(\mu, \theta)$ as test statistics ?

- The number of degrees of freedom of the fit would be N_{θ} + 1_{μ}
- However, we are **not** interested in the values of θ (\rightarrow they are *nuisance* !)
- Additional degrees of freedom dilute interesting information on μ
- The "profile likelihood" (= ratio of maximum likelihoods) concentrates the information on what we are interested in
- It is just as we usually do for chi-squared: $\Delta \chi^2(m) = \chi^2(m, \theta_{\text{best}'}) \chi^2(m_{\text{best}}, \theta_{\text{best}})$
- $N_{d.o.f.}$ of $\Delta \chi^2(m)$ is 1, and value of $\chi^2(m_{best}, \theta_{best})$ measures "Goodness-of-fit"

- Maximum Likelihood fit to estimate paremters
- what to do if estimator is non-gaussion:
 - Neyman confidence intervals
 - what "bothers" people with them
- Feldmans/Cousins confidene belts/intervals
 - unifies "limit" or "measurement" confidence belts
- CLs ... the HEP limit;
 - ➡ CLs ... ratio of "p-values" ... statisticians don't like that
 - new idea: Power Constrained limits
 - rather than specifying "sensitivity" and "neymand conf. interval"
 - decide beforehand that you'll "accept" limits only if the where your exerpiment has sufficient "power" i.e. "sensitivity !
- .. a bit about Profile Likelihood, systematic error.