International Workshop on Breakdown Science and High Gradient Technology (HG2022)

May 17, 2022, Virtual

Metamaterial Structures for High-Gradient Wakefield Acceleration

Xueying Lu

Northern Illinois University (NIU) & Argonne National Laboratory (ANL)

On behalf of: MIT/AWA/NIU teams

Northern Illinois University

Acknowledgements

PliT

- Julian Picard
- Ivan Mastovsky
- Michael Shapiro
- Richard Temkin

- Manoel Conde
- Scott Doran
- Gwanghui Ha
- John Power
- Jiahang Shao
- Charles Whiteford
- Eric Wisniewski
- Chunguang Jing (Euclid)

- Brendan Leung
- Dillon Merenich

Outline

- Motivation & Introduction
 - Needs for advanced structures for structure-based wakefield acceleration (SWFA)
 - Advantages of metamaterial (MTM) structures for SWFA
- Experimental Studies at AWA
 - MTM power extractors
 - MTM accelerators for two-beam acceleration
- Ongoing/Future Work
 - Modular MTM designs for near-term demonstrators
 - MTM structures at sub-terahertz frequencies
- Conclusions

Structure-Based Wakefield Acceleration (SWFA)

- Structure-Based Wakefield Acceleration (SWFA):
 - Extract wakefield from a "drive" beam to accelerate a "witness" beam
- SWFA requires different structure optimization from short RF pulses
 - SWFA at AWA : a few ns pulse length
 - Klystron-driven linacs: ~100 ns to ~ μ s

Needs for Advanced Wakefield Structures

- Short-pulse operation:
 - Possibly lower breakdown rate BDR $\propto E^{30}t_p^5$
 - Challenging RF design requirements
- Advanced structures for high-gradient SWFA
 - Steady process on advanced structures in recent years at AWA

X. Lu, et al., "Advanced RF Structures for Wakefield Acceleration and High-Gradient Research", Whitepaper submitted to Snowmass 2021

Metamaterials (MTMs)

- An artificial material with a subwavelength unit cells
- Unit cell designs could lead to exotic EM properties
- Double-negative MTMs: ε , $\mu < 0$

Metamaterial with split ring resonators on PC Boards

MTM Structures for SWFA

- "Wagon wheel" MTM structure
 - Periodic subwavelength structure
 - 2 mm period vs. 26 mm freespace wavelength
 - Negative group velocity
 - Negative slope of dispersion
 - Fundamental TM-like mode

MTM Structures Fulfill SWFA Requirements

- Special requirements for efficient wakefield extraction and acceleration
 - High shunt impedance (r/Q)
 - High group velocity (v_g)
 - For power extractor, $P = q^2 k_L |v_g| \left(\frac{1}{1 v_g/c}\right)^2 \Phi^2$
 - For accelerator, short filling time required for short pulses
- These requirements are challenging for conventional structures
 - General rule: beam aperture \downarrow , $r/Q \uparrow$, $v_g \downarrow$
- Reversing group velocity sign fulfills SWFA requirements

Structure	Beam Aperture (mm)	Group Velocity	r/Q (k Ω /m)
Alumina-loaded tube	6.0	0.106 c	10
Metallic disk-loaded	6.0	0.016 c	16.5
Metallic disk-loaded	17.6	0.22 c	3.9
Photonic bandgap	6.3	0.015 c	14.5
MTM 'wagon wheel'	6.0	-0.158 c	21

Goal: MTM-Based Two-Beam Acceleration

One MTM power extractor on drive beamline + One MTM accelerator on witness beamline

Goal: MTM-Based Two-Beam Acceleration

One MTM power extractor on drive beamline

Experimental Setup for MTM Power Extractors

Series of Experiments on MTM Power Extractors

Stage 1 (Experiment in 2018)

40-cell MTM structure 80 MW peak power at 11.4 GHz from 2 bunches

X. Lu, et al., Physical Review Letters, **122**, 014801 (2019)

Stage 2 (Experiment in 2019)

100-cell MTM structure 380 MW peak power at 11.7 GHz from 8 bunches

X. Lu, et al., Applied Physics Letters, **116**, 264102 (2020)

Stage-3 Experiment (2021)

- Two beam tests at AWA: Feb.- Mar. & Sep.- Oct. 2021
- Significant improvements in Stage-3 design:
 - All-copper construction
 - Symmetric output coupler design
 - Treatment of plates to mitigate breakdown risk

Thesis work of Julian Picard (graduated from MIT)

Julian Picard Highest Power Generated: 565 MW at 11.7 GHz

Thesis work of

- 565 MW from Stage-3 MTM power extractor tested in 2021
 - Highest power generated by a structure-based power extractor
 - Generated from a 355 nC train of eight bunches
 - Peak on-axis gradient of 135 MV/m
 - No breakdowns detected despite estimated surface fields >1 GV/m

J. Picard, *et al.,* "Generation of 565 MW of X -band power using a metamaterial power extractor for structure-based wakefield acceleration", *Physical Review Accelerators and Beams*, **25**, 051301 (2022)

Goal: MTM-Based Two-Beam Acceleration

One MTM power extractor on drive beamline + One MTM accelerator on witness beamline

Goal: MTM-Based Two-Beam Acceleration

One MTM accelerator on witness beamline

MTM Accelerator Design

- Phased demonstration:
 - Stage-1: RF breakdown test on an MTM accelerator (no witness beam)
 - Stage-2: Complete two-beam acceleration
- MTM accelerator design
 - First prototype: 6-cell MTM accelerator driven by a metallic disk-loaded power extractor

Beam aperture: 4 mm (diameter) Plate thickness: 1 mm

Full Structure (Vacuum Part) ~300 MV/m peak gradient from 500 MW peak, 3 ns flattop pulse extracted from the drive beam

MTM Accelerator Breakdown Test

- Structure under fabrication
- Experiment scheduled for June 2022

Mechanical Drawing

NIU student

Dillon Merenich

Courtesy of Scott Doran (AWA)

Modular Design for Future Demonstration

- Compact and cost-effective SWFA modules
 - All-metal brazeless (clamped) structure
 - Reusable mode launchers and vacuum chambers
- Nearer-term applications:
 - Compact X-ray FEL
 - Staging demonstration

NIU student Brendan Leung

Sub-Terahertz MTM Structures

- Motivation
 - Potential higher gradient for more efficient SWFA
 - Lack of high-power radiation sources in the THz gap
- Current Status
 - In the process of fabricating sample structures (e.g. W-band corrugated waveguides) for characterization of fabrication technologies

Conclusions

- SWFA with ~ns long RF pulses is a promising candidate for AAC-based colliders
- R&D on advanced structures for SWFA is much needed and has made significant progress in recent years
- Metamaterial structures can fulfill the special requirements of short-pulse SWFA
 - As power extractors
 - Highest power, 565 MW, generated by a structure-based power extractor
 - As accelerators for two-beam acceleration
- Advantages of metamaterials for SWFA:
 - Rugged structure with high group velocity and high beam-wave interaction
 - Large degree of flexibility for optimization in parameter-space
 - Compact and cost-effective modules from the clamped design
- Work supported by US DOE HEP
 - MIT: DE-SC0011556
 - NIU: DE-SC0021928
 - AWA: DE-AC02-06CH11357

