

Dr. Thomas Lucas :: Research Fellow :: Paul Scherrer Institute

Analysis of the Commissioning and Operation of the SwissFEL Linac (and Other High Gradient Activities at PSI)

High Gradient Workshop 2022

- Brief Overview of SwissFEL
- SwissFEL Conditioning Analysis
 - Overview of SwissFEL's C-band Linacs
 - Initial Conditioning Structures
 - Long Term Operation of Structures
- High Gradient Travelling-Wave Photogun
 - Overview of SwissFEL's S-band Injector
 - Electromagnetic Design
 - Dark Current and Multipacting Simulations
 - Beam Dynamics Simulations

- Brief Overview of SwissFEL
- SwissFEL Conditioning Analysis
 - Overview of SwissFEL's C-band Linacs
 - Initial Conditioning Structures
 - Long Term Operation of Structures
- High Gradient Travelling-Wave Photogun
 - Overview of SwissFEL's S-band Injector
 - Electromagnetic Design
 - Dark Current and Multipacting Simulations
 - Beam Dynamics Simulations

SwissFEL Overview

- SwissFEL is a Free-Electron Laser based at the Paul Scherrer Institute in Villigen, Switzerland.
- It consists of an S-band Injector and C-band main linac with X-band linearisers and deflector.
- The linac feeds two separate X-ray beamlines (Hard and Soft X-ray) simultaneously with two colour operation where a two bunches are separated by 28 ns.

- Brief Overview of SwissFEL
- SwissFEL Conditioning Analysis
 - Overview of SwissFEL's C-band Linacs
 - Initial Conditioning Structures
 - Long Term Operation of Structures
- High Gradient Travelling-Wave Photogun
 - Overview of SwissFEL's S-band Injector
 - Electromagnetic Design
 - Dark Current and Multipacting Simulations
 - Beam Dynamics Simulations

SwissFEL Overview: C-band Linac

- Three linacs consisting which consist of 26 C-band modules in total (no including soft X-ray line).
- Each C-band module has four accelerating structures each two metres in length.
- Each module is powered by a 50 MW, 3 μs Modulator and Klystron feeding a BOC style pulse compressor.

Conditioning of Structures

Conditioning Overview:

- Conditioning between August 2016 and October 2018 for all 26 modules.
- Required gradient approximately 30 MV/m.

Conditioning Parameters:

- Conditioning predominantly at 100 Hz.
- All structures in module powered with same power with only difference from waveguide losses.
- Pulse length varied between 100 ns and 400 ns.
- RF pulse compressor used in decay mode.
- Interlocked with reflected power and vacuum.

Conditioning and Nominal Operation

Notes:

- 28 MW = 28 MV/m
- 100 Hz operation = 3150 million pulses/year.
- Two modules (S10CB08 and S30CB11) not included as data quality was too poor.

Conditioning during Nominal Operation

Comments and Observations

- 1. Conditioning to full power took between 300 and 600 million pulses for all structures.
- 2. Some had clear evidence of conditioning algorithm impeding progress which made them condition slower.
- 3. All 104 structures surpassed the required 30 MV/m gradient (32 MW) for SwissFEL.
- 4. Breakdown rate during high power ramp was set to 10⁻⁶ BD/Pulse/m.
- 5. All structures demonstrate extremely similar breakdown behaviour.

Conditioning Rate

- Conditioning of the structures continued for over 10 billion pulses.
- Reduction in breakdown rate followed an inverse power law with no evidence of a breakdown rate floor.
- Reduction of 50 times for every decade.
- A fit of the form:

 $log10(BDR) = alog10(N_p) + b$ gives a value $a = -1.67 \pm 0.347$.

 Similar behaviour as observed in tests at CLIC structures over 200 million pulses at constant power.

- Brief Overview of SwissFEL
- SwissFEL Conditioning Analysis
 - Overview of SwissFEL's C-band Linacs
 - Initial Conditioning Structures
 - Long Term Operation of Structures
- High Gradient Travelling-Wave Photogun
 - Overview of SwissFEL's S-band Injector
 - Electromagnetic Design
 - Dark Current and Multipacting Simulations
 - Beam Dynamics Simulations

SwissFEL Overview: S-band Injector

- The S-band Standing Wave RF Photogun with a nominal peak cathode field of 100 MV/m.
- The nominal bunch parameters are a 200 pC bunch charge with a normalised emittance of 0.23 um rad and 20 A bunch current.

C-band TW Photogun: RF Design

Parameter	Value	Units	
Accelerating Cells	10 (+2 coupling cells)		
Cell Length	17.495	mm	
Total RF Length	229	mm	
Phase Advance	120	degs	
Attenuation	1.4	dB	
Group velocity	0.0079	С	
Fill Time	90	ns	
Power	37.5	MW	
Cathode Field	138	MV/m	
Extracted Field	95	MV/m	
Energy	13.1	MeV	
Pulsed Surface Heating	14	К	

New Magnetically Coupled Input Coupler With Cathode PAUL SCHERRER INSTITUT

Electromagnetic Field Distributions

PIC simulations of Performance Limiting Phenomena

Dark Current

Simulations technique described in: T. G. Lucas, Dependency of the capture of field emitted electron on the phase velocity of a high-frequency accelerating structure Nucl. Instrum. Meth. A 914 (2019) 46-52

Field Enhanceme nt Factor (β)	Effective area (A _e) [um^2]	Cathode Gradient [MV/m]	Charge arriving downstream (per 90ns RF pulse) [pC]	Capture Ratio	Total Field emitted charge (per RF pulse) [pC]	Peak Energy [MeV]
70	0.01	135	5.9	0.31	19.0	13.0
70	0.01	200	160.3	0.29	552.8	19.2

Ref: A.V. Gaponov, M.A. Miller, Potential wells for charged particles in a high-frequency electromagnetic field. Sov. Phys. JETP 7, 168 (1958)

- Simulations performed in GPT with Mesh Spacecharge.
- Increase in brightness achieved through increase in peak current.
- Ongoing investigations on increasing 6D brightness.

Parameter	TW RF Pho	togun	SwissFEL Nominal	Units	
Peak Cathode Field	135	200	100	MV/m	
Bunch Charge	200	200	200	pC	
Energy	13.1	18.8	6.6	MeV	
Projected Emittance	0.23	0.155	0.21	mm mrad	
Bunch Length	0.425	308	0.933	mm	
Peak Current (Q/ $\sqrt{12}$ t)	41	56	19	А	

- Waveguide network drawn with some small WG sections to fabricate.
- **Radiation simulations** started and will determine shielding requirements particularly thickness of new wall.
- Waveguide from klystron extended in preparation for IFAST.
- Setup ready for isolator testing (SW gun).
- Once we have the radiation simulations done we'll proceed with the **BAG application**.

SwissFEL Conditioning Analysis

- Conditioning Analysis of SwissFEL has demonstrated that consist performance for all 104 structures operating at 30 MV/m for a 400 ns with a breakdown rate of 6×10^{-10} BD/pulse/m.
- Long term operation has demonstrated that the breakdown rate continues to drop following an inverse power law fashion with a reduction 50 times per decade.

Travelling Wave Gun

- New RF design for TW gun has been finished.
- Dark current simulations performed for nominal and high gradient operation.
- Beam dynamics demonstrates that the gun can generate a peak current which is three times that of SwissFEL with a 25% reduction in emittance.

Acknowledgements

Funding (TW gun):

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme (I.FAST WP 7.4) under GA No 101004730.

People:

 Paolo Craievich, Riccardo Zennaro, Jean-Yves Raguin, Fabio Marcellini, Marco Pedrozzi, Reto Fortunati and Mattia Schaer of PSI RF group.

- SwissFEL Conceptual Design Report, <u>https://www.psi.ch/sites/default/files/import/swissfel_old/CurrentSwissFELPublicationsE</u> <u>N/SwissFEL_CDR_V20_23.04.12_small.pdf</u>
- THE SWISS FEL C-BAND ACCELERATING STRUCTURE: RF DESIGN AND THERMAL ANALYSIS, J-Y. Raguin, Proceedings of LINAC2012, Tel-Aviv, Israel <u>https://accelconf.web.cern.ch/linac2012/papers/tupb012.pdf</u>
- Initial Testing of Techniques for Large Scale Rf Conditioning for the Compact Linear Collider, T.G. Lucas, et al. <u>9th International Particle Accelerator Conference</u>, Vancouver, Canada, 29 Apr - 4 May 2018, pp.THPMK103

