

Design and Prototyping of high gradient Ka-band accelerating structures

L. Faillace, B. Spataro, M. Behtouei, M. Carillo, V. Dolgashev, G. Mauro, M. Migliorati, G. Torrisi.

Resonant Modes

0 mode frequency (GHz)

Pi/2 mode frequency (GHz)

Pi mode frequency (GHz)

Operating mode

0 mode Quality factor

Pi/2 mode Quality factor

Pi mode Quality factor

Operating mode (pi)

Longitudinal Shunt

Abstract

The goal of the project is the **Design of metallic Ka-band structures at acceleration gradient > 100 MV/m**. The RF structure geometry is of the "open" (braze-free)-type made of multiple parts, e.g. two halves, four quadrants and more. The innovative braze-free cavities manufacturing, which does not involve any high-temperature process - and proper material choice, mechanical and thermal treatment could be a valuable solution at higher frequencies to increase the maximum allowed field gradients and reduce the vacuum RF breakdown The focus is on the numerical demonstration of high accelerating gradient (>100 MV/m) in miniaturized structures and experimental validation of numerical models through fabrication and "cold" RF test of Ka-band metallic structures: we propose to investigate the processes, materials, technology and welding procedure used to manufacture accelerating components in order to achieve the maximum accelerating gradient and the minimum RF breakdown probability.

Cavity Design and Prototyping – Multiple parts open structures

The electric field in the middle cell is two times higher in the middle cell in order to localize and analyze the RF breakdown events.

Quadrants vs. Closed structure

- Similar longitudinal shunt impedances;
- Higher lower-modes separation;
- Higher vacuum pumping capacity through slots;
- The quality factor decreases by only 2%.

TIG welding on the outer slots \rightarrow avoiding high temperature brazing and/or diffusion bonding processes (the typical assembly methods widely used to manufacture ultrahigh vacuum accelerating devices) which occurring at about 800–1000 °C - significantly change the cavity mechanical properties.

Impedance (M Ω /m)

Main RF Parameters

Closed

structure

33.897

34.603

35.982

5,980

5,806

5,978

240

4 quadrants

33.838

34.580

35.982

5,883

5,711

5,877

235

Four-quadrants Ka-band structure with RF Mode Launcher

- launcher is > Four-port mode matched with the resonant Kaband structure made of four quadrants;
- > The reflection coefficient at the RF input power port is S₁₁ < -12 dB;
- > The RF cavity on-axis electric field profile shows the same behavior as the isolated structure.
- ➤ The estimated input RF power is Pin = 1MW in order to obtain an accelerating gradient about Eacc=125 MV/m in the middle cell.

References and Acknowledgments

- •B. Spataro et al.,' Innovative compact braze-free accelerating cavity', Jinst, September 19, 2018
- •M. Behtouei, B. Spataro,' New Analytical derivation of Group Velocity in TW accelerating structures, IOP Publishing, Journal of Physics: Conference Series 1350 (2019) 012112 IOP Publishing doi:10.1088/1742-6596/1350/1/012112
- •B. Spataro et al.,' Materials and technological processes for High-Gradient acceleratin structures: new results from mechanical tests of an innovative braze-free cavity', Jinst, January 27, 2020
- •B. Spataro et al.,' Materials and technological processes for High-Gradient accelerating structures: new results from mechanical tests of an innovative braze-free cavity ', Jinst , January 27, 2020
- •M. Behtouei, B. Spataro,' A SW Ka-Band linearizer structure with minimum surface electric field for the compact light XLS project', Nuclear Inst. and Methods in Physics Research, A 984 (2020) 164653
- •B. Spataro et al.,'A novel exact analytical expression for the magnetic field of a solenoid', Waves in Random Complex Media, 10 October 2020
- •V. Dolgashev, B. Spataro et al., 'High Gradient RF tests of Welded X-Band Acellerating Structure', Physical Review Accelerators and Beams 24, 081002 (2021)
- •B. Spataro et al.,"The Ka-band High Power Amplifier Design Program of INFN', Vacuum 191 (2021) 110377
- •B. Spataro et al.,' Ka-band Linearizer for the Ultra-Compact X-Ray Free Electron Laser at UCLA', Nuclear Inst. and Methods in Physics Research, A 1013 (2021) 165643
- •M. Bethouei, B. Spataro et al, 'Relativistic Versus Nonrelativistic approaches to a low Perveance High Quality Klystron Matched Beam for a High Efficiency Ka-band Klystron', MDPI, 10 November 2021, Instruments 2021, 5, 33
- •F. Marrese, B. Spataro et. al.,' Multiphysics Design of High-Power Microwave Vacuum Window', Journal of Microwaves, Optoelectronics and Electromagnetic Application, Vol. 21, N. 1, March 2022
- •G. Torrisi et al., 'Design of a compact Ka-band Mode launcher for High-Gradient Accelerators', JACoW IPAC2021 (2021) MOPAB353 DOI: 10.18429/JACoW-IPAC2021-MOPAB353 (Aug 10, 2021)
- •G. Torrisi et al., "Closed-to-open conversion of a mm-wave Gaussian horn antenna," 12th European Conference on Antennas and Propagation (EuCAP 2018), 2018, pp. 1-4, doi: 10.1049/cp.2018.1146.
- •G. Torrisi et al., "Synthesis of open structures starting from closed-cross-section waveguide devices". IET Microw. Antennas Propag., 14: 1522-1529.
- •Part of this work was supported by the INFN Commette V for the funding of the MICRON experiment.