Ab-initio Cu alloy design for high-gradient accelerating structures

Gaoxue Wang, Evgenya Simakov, Danny Perez

05/18/2022

Outline

- Introduction
 - Figure of merit (FOM)
- Computational details
 - Compare calculated Cu alloy properties with existing experiments
- FOM of dilute Cu alloys
 - What alloy is good? At what solute concentration?
- Summary and plan

RF breakdown

- Breakdown probability is dependent on the material of the cavity.
- CuAg alloys can improve breakdown resistance
- Can we scan the whole periodic table in search of the optimal solute and concentration?

Simakov, Dolgashev, Tantawi, 2018

FOM overview

Tradeoffs:

- Good: Adding solute atoms can improve strength: limit plastic deformation under thermal loading
- Bad: Adding solute atoms can increase RF dissipation and thermal stresses: increase driving force for plastic deformation
- Figure of merit (FOM):
 - Critical stress to move dislocations / Thermal stress created by RF dissipation

FOM #1: Critical stress to move dislocations

Labusch–Nabarro (LN) model: Critical resolved shear stress required for dislocation motion:

$$\tau_{L-N} = \frac{(2\omega f_m^4 c^2)^{1/3}}{2b^{7/3} (Gb^2)^{1/3}}$$

With:
$$f_m = \frac{Gb^2}{120} \varepsilon_L$$
 $\varepsilon_L = \sqrt{\varepsilon_G'^2 + (\alpha \varepsilon_b)^2} \begin{cases} \alpha = 9 - 16 \\ \varepsilon_G' = \frac{\varepsilon_G}{1 + 0.5 |\varepsilon_G|} \end{cases}$

- Two key parameters:
 Size misfit $\varepsilon_b = \frac{db}{bdc}$ Modulus misfit $\varepsilon_G = \frac{dG}{Gdc}$

Johan Zander et al., Computational Materials Science 41 (2007) 86–95 M. Z. Butt, Journal of Materials Science 28 (1993) 2557-2576

FOM #2: Thermal stress created by RF dissipation

 Heating due to RF losses can be estimated from the solution of the heat equation:

Accelerator parameters
$$\Delta T = \frac{G^2 \sqrt{T_p}}{Z_H^2} \frac{R_s}{\sqrt{\pi \rho c_{\varepsilon} k}}$$
 Material properties

 Assuming that the surface is free to relax in z only, the corresponding inplane thermal stress is

$$\varepsilon_{xx} \equiv \varepsilon_{yy} \equiv -\frac{E\alpha T}{1-v}$$

Perry B. Wilson. In ITP Conference on Future High Energy Colliders. University of California, Santa Barbara, October 1996.

Calculating the FOM requires:

- Lattice constant: direct structure relaxation (DFT)
- Mechanical properties: finite distortion (DFT)
- Thermal expansion coefficient: quasi-harmonic approximation (DFT)
- Electrical and thermal conductivity:
 - SPRKKR

These quantities need to be computed vs solute concentration.

This requires tens of DFT calculations per solute per concentration (!)

Resistivity

Experiments

Experiments from: Han, Seung Zeon, Eun-Ae Choi, Sung Hwan Lim, Sangshik Kim, and Jehyun Lee. "Alloy design strategies to increase strength and its trade-offs together." *Progress in Materials Science* 117 (2021): 100720.

Electrical conductivity

(*Normalized by conductivity of pure Cu)

Bulk and shear modulus

Thermal expansion coefficient

Experimental data from:

- S. I. Novikova, Thermal expansion of solids (in Russian) (Nauka, Moscow, 1974).
- D. V. Minakov et al., PHYSICAL REVIEW B 92, 224102 (2015)

FOM #1: Critical stress to move dislocations

FOM #2: Thermal stress created by RF dissipation

FOM = FOM #1 / FOM #2

Summary and plan

Summary:

- ➤ FOM: tradeoff between solute strengthening and thermal stress
- Identify binary Cu alloys that are promising for high gradient accelerator design

Future work:

- Extend to ternary alloys
- Engage with experimental efforts to assess potential candidate alloys

Wang, Gaoxue, Evgenya I. Simakov, and Danny Perez. *Applied Physics Letters* 120, no. 13 (2022): 134101.

Acknowledgements

C-band team at LANL

• LDRD-DR: 20200057DR, 20190079DR