

HG2022 Online 19 May 2022 **RIKEN Teraphotonics**

High-intesity 300-GHz Terahertz-wave generation based on nonlinear optical down-conversion

Hiroaki MINAMIDE,

Teraphotonics Research Team RIKEN Center for Advanced Photonics, RIKEN

Outline

1. Introduction

- Background & Motivation
- 2. Backward Terahertz-wave Parametric Oscillation
 - Slant-stripe-type PPLN crystal
 - Advantageous property
- 3. Experimental results of BW-TPO
 - Stable emission by injection-seeding for idler wave
 - High-brightness output by cascading process
 - Stable 2D imaging measurement toward 3D imaging

4. Summary

Injection-seeded Terahertz-wave parametric generation

Dispersion curve of polariton

S. S. Sussman, Stanford Univ., Microwave Lab. Rep. 1851, (1970).

K. Kawase, J. Shikata, K. Imai, and H. Ito, "Transform-limited, narrow-linewidth, terahertzwave parametric generator," *Applied Physics Letters*, vol. 78, pp. 2819-2821, 2001. 3

Gain of Stimulated Brillouin Scattering

SBS reduction is key factor for intense THz-wave generation

How long pulse duration is effective?

- Phonon lifetime of LN ~ 150 ps
- Steady state of SBS > 1.5 ns
- Shorter is better or not?
- Seems to be good around inflection point, 100 ~ 200 ps?

*A. de Bernabé, C. Prieto, and A. de Andrés, Journal of Applied Physics, **79**, 143–148 (1996).

SBS gain as a function of pulse width

G. W. Faris, L. E. Jusinski, and A. P. Hickman, J. Opt. Soc. Am. B, **10, 587–599 (1993).

Power spectra of the is-TPG

Application of intense THz-wave generation

Required THz-wave source

- 0.3 THz
- 1 MW
- 100 ps
- $\rightarrow \sim \text{GeV/m gradient}$

Current RF source

- ~3 GHz
- 10s MW
- ~µs
- \rightarrow 30 MeV/m

L=100 m ~ km

2 orders of magnitude higher gradients

<u>_</u> = cm ~ m

- ➡ 100 times smaller electron accelerators is possible!!
- Advantages of THz-wave electron accelerators
 - Higher breakdown threshold ($\propto \omega^{1/2}$)
 - Lower pulse energy: ($\propto \lambda^2$)
 - Higher repetition rate: >1 kHz

 $\omega = 0.3 \text{ THz}$

- P = 1 MW
- τ = 100 ps

SLAC's accelerator structure

M. Othman *et al.*, APL **117**, 073502 (2020).

Characterization with KEK

Quasi-phase-matched (QPM) device Periodically-Poled Lithium Niobate (PPLN)

Phase-matching condition in PPLN can be controlled to the best at a wavelength user requires.

Reported experiment: PPGaAs: K. L. Vodopyanov, *CLEO2014*, STh4F.7.

- C. Weiss, G. Torosyan, Y. Avetisyan, and R. Beigang, Opt. Lett. 26, 563-565 (2001).
- Y.-S. Lee, T. Meade, M. DeCamp, and T. B. Norris, Appl. Phys. Lett. 77, 1244 (2000).
- Y. Avetisyan, Y. Sasaki, and H. Ito, Appl Phys B 73, 511–514 (2001).

In phase mismatching $\Delta k = 0$, most efficient conversion is given.

Using PPLN, high conversion-efficiency is obtained because of well-optimization on its own artificial design. However, how seamless tunability would be obtained?

Nobel phase-matching condition

Discovery of new idler emission with different wavelength from that we expected in the experiment.

RIKEN Teraphotonics

We proposed this new phase-matching condition from the experimental results.

Key: Collinear phase-matching + noncollinear phase-matching₈

Backward Terahertz-wave Parametric Oscillation (TPO)

Patent: 2016-192374

Pump

has potential of perfect photon conversion. 9

RIKEN Teraphotonics

Output of BW-TPO

Efficient THz-wave generation was successfully obtained, so that not only BW oscillation but also FW generation were simultaneously generated in high pumping condition.

Experimental setup of Injectionseeded BW-TPO for idler beam

Injection seeding is best way to concentrate the large gain into one phase-matching condition dramatically.

RIKEN Teraphotonics

Input-output characteristics pump energy dependence

Backward THz-wave

- Over 1000-fold enhancement
- Max. pulse energy: 1.2 nJ

<u>Idler</u>

- Threshold reduction: 63%
- Total conversion efficiency: 47%

Efficient suppression for FW generation has been done. Then, BW output required was selectively generated.

Ubiquitous remote sensing 2D and 3D imaging

Infrastructure inspection on autonomous robot

Industrial quality control on robot arms

O.E. Vol. 20, No. 23 /pp. 25432, 2012

JIMT, 41, pp. 470-489, 2020

Radom inspection

Volume inspection by BW-TPO would be applicable to NDT.

Summary

High-Brightness Backward TPO has been demonstrated

- ✓ Injection-seeding provided stable emission and threshold reduction
- ✓ Cascaded process enhanced output THz-wave energy; 200W←80W
- ✓ Wide frequency tunability exceeding electric device source provides highdepth resolution

The BW-TPO can be expected to open new uses in THz-wave driven particle acceleration or nondestructive testing.

FY2022 RIKEN-Tohoku Univ Science & Technology Hub Collaborative Research Program (瀧田/科技ハブ)

Japan-China Scientific Cooperation Program between JSPS and NSFC, JPJSBP120207407

Innovative Science and Technology Initiative for Security Grant Number JPJ004596, ATLA, Japan

Collaborators and Advisers

Industrial Collaborators:

- Prof. Hiromasa ITO, RIKEN and Tohoku University
- •Guest Prof. M. Kumano, Tohoku University

 Moreover, I thank previous and present researchers, technical staffs and researchers and persons in collaboration works.