

HIGH GRADIENT RESEARCH ACTIVITIES AT AWA

JOHN POWER FOR ARGONNE WAKEFIELD ACCELERATOR (AWA)

https://www.anl.gov/awa

International Workshop on Breakdown Science and High Gradient Technology (HG2022) 16-19 May 2022 MY GOAL TODAY...

To help you understand the **High Gradient Research Program** at Argonne

- Why? → short-pulse RF
 - How? → Structure Wakefield Acceleration
 - Where? → Argonne Wakefield Accelerator Facility
 - What? → Recent Progress in short-pulse RF

The Short Pulse RF Advantage Breakdown Rate (BDR)

S. Doebert et al.,PAC'05

https://accelconf.web.cern.ch/p05/PAPERS/ROAC004.PDF

A. Grudiev, S. Calatroni, and W. Wuensch Phys. Rev. ST Accel. Beams 12,102001 (2009)

SLAC/KEK/CLIC Scaling Law

 $\tau(ns)$

ULTRA SHORT-PULSE REGIME

- <u>New physics:</u> Empirical scaling law, underlying mechanism may change
- <u>Challenges:</u> Challenges to operate in the short-pulse regime: broadband couplers, efficiency, stability, etc.

H. H. Braun, et al., "*High-power testing of 30 ghz accelerating Structures at CTF II*", CLIC Note 475 W. Wuensch, et al., "*A demonstration of high-gradient acceleration*", PAC'03

m

5

ELECTRON BEAM DRIVEN SFWA

Argonne

Collinear Wakefield Acceleration

PWFA-like CWA uses single beamline

- Pros
 - One structure & no couplers
- Cons
 - Challenges associated with combined beam dynamics of drive and witness bunches.

Klystron-like TBA uses two parallel beamlines

- Pros
 - Decoupled drive/main beam optics design
 - Structures optimized for drive and witness beam
- Cons
 - Two structures with complex waveguide & couplers,

4/20

ELECTRON BEAM DRIVEN SFWA – TBA Structure Wakefield Acceleration – Two Beam Acceleration

THE

ARGONNE WAKEFIELD ACCELERATOR TEST FACILITY

AWA R&D PROGRAM

High brightness electron source, novel cathodes

- High-gradient & high-efficiency
- SWFA & PWFA acceleration

THE ARGONNE WAKEFIELD ACCELERATOR FACILITY

3x 1300 MHz RF photocathode guns

DRIVE

- 65-MeV Drive photoinjector (Cs₂Te) linac
- World's highest-charge (e.g. 100 nC) photoinjector
- High brightness low-Q beam

WITNESS

- 15 MeV photoinjector linac
- Produces bright beam acceleration
- Supports low-energy experiments

- Cathode research (photocathode and field emission)
- Breakdown Physics

Reconfigurable Experimental Switchyard

THE ARGONNE WAKEFIELD ACCELERATOR FACILITY

THE AWA FACILITY

RESEARCH AREAS

Beam-driven wakefield acceleration

- Structure Wakefield Acceleration (SWFA)
 - Collinear Wakefield Acceleration (CWA)
 - Two-Beam Acceleration (TBA)
- Plasma Wakefield Acceleration (PWFA)

RF Acceleration Technology

- 100's MV/m NCRF short-pulse structures
- 100's MW NCRF short-pulse power source

Accelerator and Beam Physics

- 6D phase space manipulation
- Electron cooling
- Novel diagnostics (Single-shot, AI/ML Virtual, etc.)

Electron sources

Photo and field emission. High brightness beams.

Machine Learning

ML for machine control, virtual diagnostics and physics

THE ARGONNE WAKEFIELD ACCELERATOR FACILITY Novel Structure Development

Iris loaded structures

Rectangular dielectric

Coaxial dielectric

Dielectric disk accelerator

Photonic band gap structures

Meta/left-handed structures

THE ARGONNE WAKEFIELD ACCELERATOR FACILITY RF Structure $R&D \rightarrow$ end to end capabilities

High power test

RECENT PROGRESS IN THE SHORT-PULSE REGIME

1. **RF Power Generation – demonstrated**

• 565 MW Metamaterial PETS – Xueying Lu (Talk Tuesday)

2. High Gradient Acceleration – demonstrated

- 300 MV/m Single-cell Jiahang Shao (Talk Tuesday)
- 400 MV/m & low-dark current RF TW photocathode gun (publication submitted)
- 100 MV/m Dielectric Disk Accelerator Ben Freemire (Talk Thursday) & Sarah Weatherly (Poster Thursday)

3. Short-pulse – New directions

- X-band deflector Chunguang Jing (Poster Tuesday)
- Single Cycle Structures Sergey Kuzikov (Poster Wednesday)

565 MW with MTM PETS – RF Power Generation

Metamaterial (MTM) structures for SWFA

- A new type of structure designed for efficient wakefield generation and acceleration
- Highest power generated using a 11.7 GHz MTM power extractor
 - Stage-3 experiment in 2021*
 - 565 MW RF power generated by a structurebased PETS
 - 355 nC train of eight bunches used to drive the MTM PETS
- Ongoing research:
 - MTM structures as accelerators for twobeam acceleration

*J. Picard, *et al.,* "Generation of 565 MW of X -band power using a metamaterial power extractor for structure-based wakefield acceleration", *Physical Review Accelerators and Beams*, **accepted** 13/20 Wagon wheel MTM structure

Talk: Xueying Lu (Tuesday)

RF Power Measured from MTM Power Extractor

270 MV/m Single-cell – High Gradient Acceleration

BDR tests, "6 ns, 34 ns, 54 ns, 103 ns"

- X-band TW single-cell accelerating structure
 - 1 normal cell + 2 matching cells
 - Longer pulse (34, 54,103 ns) tested at Tsinghua: klystron + pulse compressor
 - Short pulse (6 ns) tested at AWA: metallic PETS

- Record gradient in X-band normal conducting structures
 - 270 MV/m accelerating gradient in the normal cell
 - 300 MV/m field in the first matching cell
 - 500 MV/m surface gradient in the first matching cell

Talk: Jiahang Shao (Tuesday)

400 MV/m Photocathode Gun – High Gradient Acceleration

High-Gradient X-band PC gun accelerate photoelectrons

- Gun performance
 - 387 MV/m on the photocathode
 - BDR ~4e-6 (estimated)
 - Ultra low dark current (<1pC per RF pulse)
- First beam! (initial characterization)
 100 pC @ 3 MeV

Next Step

Building complete X-band beamlines operating in short-pulse regime

nicad

100 MV/m Dielectric Disk Accelerator

High Gradient Acceleration

Brazed Single-Cell DDA

• High Power Test

- Significant multipacting observed
- Significant breakdown observed
- 80 MW achieved (400 MW goal)
- Post-mortem inspection revealed field enhancement problem at triple junction

Clamped Single-Cell DDA

- Special attention to triple junction design
- Not brazed to simplify physics & engineering
- High Power Test
 - 100 MV/m DDA (beam limited)
 - First dielectric structure not limited by multipactor at high-gradient

Talk: Ben Freemire (Thursday)

100 MV/m Dielectric Disk Accelerator

High Gradient Acceleration

Next step: Multicell DDA

- Clamped model, like single cell prototype.
- RF geometry is complete; fabrication will begin soon.

17/20

EUCIID TECHLABS

Poster: Sarah Weatherly (Thursday)

X-band Deflector – New Directions

Deflector based Bunch-Shaping

 100MV/m → RF conditioned the first high-gradient, short-pulse deflector

Poster: Chunguang Jing (Tuesday)

• Deflector-based bunch shaping beamline (CSR free)

18/20

Single-Cycle Structure – New Directions

Single-Cycle Accelerating Structure

Poster: Sergey Kuzikov (Wednesday)

100

Single-cycle acceleration cell.

parabolic shape. Time flows evenly as a-b-c-d.

19/20

SUMMARY

SHORT-PULSE REGIME

- Exploring breakdown physics on short time scales (1-100ns)
- Progress
 - 565 MW metamaterial power extractor
 - 300 MV/m X-band TW accelerating structure
 - 400 MV/m X-band SW photocathode gun
 - 100 MV/m dielectric disk accelerator
 - 100 MV/m X-band transverse deflector
- Next Steps
 - Single cycle accelerators, higher frequency,
 - Integration \rightarrow short pulse accelerating beamlines

STRENGTHEN COLLABORATION BETWEEN SWFA AND HG COMMUNITIES

• short-pulse RF offers a promising path to high-gradient acceleration

THANKS TO SWFA GLOBAL COMMUNITY

