Update of CERN X-Band activities

M. Boronat on behalf of X-Boxes team

15th Workshop on breakdowns science and high gradient accelerators technology, HG2022, May 16-19 2022.

X-Box 1:

- Conditioning of VKX-8331 repaired klystron
- Phase stabilization test

- Long waveguide networks are subject to changes on temperature, altering the phase of the RF arriving to the accelerating structure.
- To keep under control these changes the method proposed use a parasitic low power RF pulses that will be injected alongside with the high power pulses, using a different frequency.

A.C. Dexter, S.J. Smith, B.J. Woolley, A. Grudiev, **Femto-second synchronisation with a waveguide interferometer**, https://doi.org/10.1016/j.nima.2017.11.046 Amelia Edwards et al., **X-Band Interferometry at Xbox1 and Xbox Status**, CLIC Project Meeting 41

4

16/5/22

- The different of length between both arm need to be precisely determine and fixed
- > Long arm temperature is controlled with heating tapes
- > Short arm temperature is stabilized using water cooling

The interferometer system should be 'invisible' to high power klystron pulses entering into port 1

- The high power pulses, at 11,9942 GHz, will reach the loads.
- The low power pulse, at 11,9399 GHz will be partially reflected on the mode converter
- The reflected signal will be used to monitor the phase using the directional coupler connected to the TWT (PLR).

- The correlation between the reflected phase and copper surface temperature is shown
- Could be used to create a feedback system on the klystron output phase

X-Box 1 Status and Plans

- Waiting for the 50 MW klystron to be repaired and shipped back
- Acceptance of the repaired klystron - Connected to the load, on CLEAR
- Can be use to test the super-structure on CLEAR
- Or, in CTF2, as a part of the AWAKE injector (X-Band PSI structure)

X-Box 2:

MgB₂ SC solenoid for VKX-8331 – Integration and optimization

Prototype compatible with 50 MW CPI klystron

- KEK-CERN collaboration and manufactured by Hitachi
- MgB₂ wire for the klystron magnet, with a unit length of 5.6 km. Diameter 0.67 mm
- Central field 0.8 T @ 57 A
- High efficiency: Reduce the power consumption form 20 kW to 3 kW

Very safe and stable operation

16/5/22

Applying Superconducting Magnet Technology for High-efficiency Klystrons in Particle Accelerator RF Systems; Yamamoto, Akira et al. CERN-ACC-2020-0020 ; CLIC-Note-1159. - 2020. - 6 p. (http://cds.cern.ch/record/2730571)

- Already made at CERN (Dec 2020)
 - Cooling and powering
 - Magnetic measurement
 - Interlocks integration and test
 - First Gain Curves
- To obtain the same magnetic profile than the normal conducting solenoid, the current applied was 29,86 A

- Already made at CERN (Dec 2020)
 - Cooling and powering
 - Magnetic measurement
- Interlocks integration and test
- First Gain Curves
- Due the availability of the 50 MW klystron the testing was postponed

Development of Prototype MgB₂ Superconducting Solenoid Magnet for High - efficiency Klystron Applications; Watanabe, H et al. CERN-ACC-2020-0022 ; CLIC-Note-1161. - 2020. - 7 p. (<u>http://cds.cern.ch/record/2730621</u>)

- The MgB₂ solenoid has been reinstalled in X-Box 2.
- Today the solenoid temperature was below 20k
- GOAL: Optimization of the klystron performance with MgB₂ solenoid
- Integration of the monitoring and interlock system for long term operation.
- Split the power in two test benches
- Install two TD31 structures

X-Box 3:

- "Single cell" test post-morten
- > HP RF Window tested
- > CRAB cavity from Lancaster conditioned (TNA)
- Deflector SARI conditioned (TNA)

X-Box 3 – "Single cell" test

- Breakdowns concentrated in the front part of the structure.
- Less breakdowns in the end cells which have higher field
- Reach over 100 MV/m is limited due to the maximum power produce by X-box 3
- Flip the structure and retest it at high power
- Higher fields on the first cells

X-Box 3 – "Single cell" test

 Gradient of the first cell reached 120 MV/m (120.7 MV/m @ 27.4 MW input power)

Fordward History

Backward History

> First structure dry cut with diamond wire at CERN

Firis 1 - Input

200 μm EHT = 20.00 kV	Date: 4 Nov 2021	EHT = 20.00 kV	Date: 4 Nov 2021
WD = 19.3 mm Sample ID = T24 iris 1 in	Mag = 50 X	WD = 19.3 mm Sample ID = T24 iris 1 in	Mag = 1.00 K X
Signal A = SE2	Enrique Rodriguez Castro	Signal A = SE2	Enrique Rodriguez Castro

21

16/5/22

HG2022

Firis 1 - Output

HG2022

Firis 26 - Input

23

16/5/22

Iris 26 - Output

X-Box 3 HP RF Window

- High power RF window tested on X - Box 3 up to 40 MW
- Frequency 11.9942 GHz
- Designed up to 75 MW
- ► E_{max} Ceramic 3.4 MV/m
- ➢ Integrated Power Flow : 2.4 kW

HG2022

X-Box 3 HP Window

- High power RF Window tested up to 40 MW
- Ramping speed limited by the conditioning of the structure on the other line
- 3 months installed

16/5/22

X-Box 3 HP RF Window

- High power RF Window tested up to 40 MW
- Ramping speed limited by the conditioning of the structure on the other line
- > 3 months operation
- Most of the BDs detected on other components of the test benches

X-Box 3 Lancaster Deflector

- CRAB Deflector:
 - Frequency 11.9942 GHz@34 deg
 - Phase Adv 120 deg
 - Fill time 11.2 ns
 - Num cells 12
- Conditioned up to 40 MW with pulse length 50 ns, 100 ns 150 ns
- 5 month installed

X-box3 Lancaster Deflector

HG2022

X-Box 3 Lancaster Deflector

- CRAB Deflector:
 - Frequency 11.9942 GHz
 - Phase Adv 120 deg
 - Fill time 11.2 ns
 - Num cells 12
- Conditioned up to 40 MW with pulse length 50 ns, 100 ns 150 ns
- 5 month installed

X-Box 3 Shanghai Deflector

- SARI Deflector:
 - Frequency 11.9942
 GHz@26 deg
 - Phase Adv 120 deg
 - Fill time 21 ns
 - o Num. cells 20
- Conditioned up to 40 MW with pulse length 50 ns, 100 ns 150 ns
- > 11 month installed

X-Box 3 Shanghai Deflector

➢ Fist Round

16/5/22

X-Box 3 Shanghai Deflector

Second Round

HG2022

X-Box 3 Availability time

Availability in the las 11 month.

- Two klystron broken (windows problem, heater ploblem)
- New klystron installed CANON E37113 with a new improved window
- Efficiency 42% to 56%
- Peak power 6MW to 8.2MW

X-Box 3 Spiral Loads and TD31

Currently installed 2 spiral loads with 45 deg geometry to perform a standalone test and conditioning.

Install two TD31 structures

HG2022

Thanks

...N. Catalan Lasheras, A. Baig, R. Brouns, A.M. Chauchet, S. Curts, E. Rodrigez, H. Bursali, J. Cai, M. Capstick, A. Edwards, A Fontenla, A. Grudiev, S. Lebet, G. Mcmonagle, L. Millar, P. Morales, J. Sauza Bedolla, C. Serpico, A. Solodko, I. Syratchev, M. Volpi, X. Wu, W. Wuensch...

Backup

X-Box 1 – VKX8331 Conditioning

- Basic check made at the factory
- Installed in X-Box 1 and connected to two loads inside CLEAR facility
- The conditioning was done at CERN
- The upgraded signal generation and acquisition systems was tested
- Using a 50 ns RF pulses, the output power reached was 40 MW

HG2022

16/5/22

- > MgB2 wire for the klystron magnet, with a unit length of 8 km. Diameter 0.67 mm.
- \succ 5.6 km used for the solenoid coil.
- ▶ It consists of 152 turns and 16 layers per coil.
- > T_{cs} of the magnet at I_{op} = 57.1 A is 29 K.
- > The coil design parameters are optimized to realize a self-protected coil without requiring an active quench protection system.
- Thin, 0.2 mm thick Cu sheets (half cylinder shells) are embedded between coil layers to enhance conducting cooling power and quench propagation velocity along the coil axial direction.
- > Operation temperature ~15K
- > A cryocooler is applied for conduction cooling of the coil via Cu thermal link.
- ≻ Cooldown ~150 h
- > The energy consumption per magnet was less than 3 kW.
- > Two magnets in a series, energy consumption per magnet less than 1.5 kW.

HG2022