

Updates on the High Gradient S Band Experiments at IFIC

P. Martinez-Reviriego, D. Esperante, C. Blanch, N. Fuster-Martínez, B. Gimeno, D. Gonzalez-Iglesias, P. Martín-Luna, J. Fuster

16-05-2022

Outline

☐ Facility overview ☐ Operation summary ☐ S-band Backward Travelling Wave (BTW) structure studies results Conditioning BD localization analysis BDR measurements Dark current dynamics and radiation measurements Conclusions and future plans

The IFIC HG-RF laboratory

- ☐ High-gradient normal conducting RF cavities research topics at S-Band (2.9985 GHz) frequency.
- ☐ Very similar to the Xbox-3 test facility at CERN at 12 GHz but for a central frequency of 2.9985 GHz.
- \Box Main design parameters: 15 MW with 5 μs pulses and 200 Hz repetition rate for testing two structures at the same time.

The CERN S-band BTW structure

- ☐ CERN designed two S-band accelerating structures based on CLIC high-gradient design methodology for protons.
- ☐ 2.9985 GHz at 32°C
- \Box $\beta = 0.38$
- \Box 12 cells with Δφ=150°
- ☐ Filling time: 224 ns
- ☐ Structure length: 189.9 mm
- ☐ Group velocity: 0.39/0.21 %c

Modified Poynting vector S_C:

☐ Irises

☐ Coupling holes

Beam

Operation summary

- ☐ Vacuum: Below ~1x10⁻⁸ mbar ☐ **Temp. structure**: 22-23°C (2.9990 GHz) ☐ Pulse length:
- ☐ Maximum power 12 MW in ~570M pulses (short pulse length).

- R:100 ns + FT: 200 ns + F:300 ns
- R:100 ns + FT: 500 ns + F:300 ns
- R:100 ns + FT: 800 ns + F:300 ns

Conditioning summary I

☐ With current set-up we reached an accelerating gradient of ~39 MV/m.

☐ Pulse length:

- R:100 ns + FT: 200 ns + F:300 ns
- o R:100 ns + FT: 500 ns + F:300 ns
- R:100 ns + FT: 800 ns + F:300 ns

■ Dark current and radiation:

- Faraday cups.
- Ionization chamber.

Conditioning summary II

- ☐ Dark current and radiation scans as a function of the gradient at different moments in the conditioning.
- ☐ Radiation studies and enhancement factor calculations.

$$Q_{UP}(mA) = \frac{Q_{UP}(nC)}{flat \ top \ (\mu s)}$$

$$Dose (Gy/min) = \frac{mean \ Dose \ (\mu Gy/min)}{rate \ (Hz) \cdot flat \ top \ (\mu S)}$$

Enhancement factor β estimation

☐ Fowler-Nordheim equation: electrons are emitted through tunneling due to high surface electric field.

$$I_F = \frac{A \cdot S}{\phi} (E)^{2.5} \exp \left(-\frac{B \cdot \phi^{\frac{3}{2}}}{E} \right) \begin{bmatrix} A \end{bmatrix}$$
 Statistical Analysis of Field emission Currents. **Phys. Rev. Applied 16, 024007 – Published 4 August 2021.**

$$E = \beta E_0$$

A, B: Constants FN model **S:** Emitters surface $\phi = 4.65 \ eV$ Copper work function E: Surface electric fieldE₀: Acceleration gradientβ: total enhancement factor

BD localization analysis: edge method

☐ Using the typical methods based on the timing difference between the reflected signal rise and transmitted signal fall we can determine the t_d

transmitted signal fall we can determine the
$$t_d$$
.

$$t_d^{edge}[ns] = \frac{\Delta t_{REF} - \Delta t_{TRA}}{2}$$

FT: 200 ns

500 ns

800 ns

FT: 200 ns

500 ns

800 ns

$$t_{REF} = t_{TRA}$$

The production of the coupler of the couple of the coupler of the couple of the couple of the cou

Incident Power

- ☐ The accumulated BDs around 120 ns have very similar reflected signal shape and peak and high dark current.
 - Working on better understanding this BD.

Transmitted

BD localization analysis: BDs evolution

☐ Using the group velocity profile the delay expected for each cell can be computed.

- ☐ The distribution of BDs happening along the conditioning is quite uniform.
- ☐ The huge accumulation of BDs in cells 8 and 9 w. r. t. other cells for short pulses are under investigation.

BD localization analysis: phase method

☐ Localization method based on the difference of the phase of the incident and reflected signals.

- Not clear correlation between phase and delay time.
 - Deeper analysis on-going.

BD localization analysis: dark current method

<u>Dark current signal method</u>: compares the time of detection in which the reflected power rises and the time at which one of the two FC signals increase. $rac{t}{dge} rac{dge}{dge} ra$

Trigger

$$t_{BD} = \min\{t_{FCUP}, t_{FCDOWN}\}$$

 $t_d^{edge}[ns] = t_{REF} - t_{BD}$ $t_d^{edge}[ns] = t_{TRA} - t_{BD}$

Reflectection rise

Transmission fall

Hypothesis: Electrons must reach to the FC faster than our time resolution "4 ns" (CST simulations)

BD localization preliminary results: "current method"

BDR measurements

Preliminary BDR study for a fix power.

BDR $\propto E_{acc}^{30}$ (for electron designs)

- ☐ Measurements performed:
 - After reaching the maximum power.
 - After 3 days at max. power.
- □ Results improved for the second measurement: BDR decreases if conditioning is made at constant gradient.
- BDR are above specifications for medical applications: 7.7x10⁻⁷ BD/(pulse·m)

Dark current dynamics studies

Motivation:

☐ Model and characterize the dynamics and impact of the electrons generated by field emission.

Procedure: Using 3D EM codes (CST PS).

 \Box Field emission from a certain cell. $J = aE^2e^{-b/E}$

☐ Tracking of emitted electrons.

Studies:

- ☐ Ratio of electrons reaching FC
- ☐ Energy of electron in FC
- ☐ Energy deposited in walls

Scans:

- ☐ Emission cell
- ☐ RF power

Maximum energy of electrons colliding inside the cavity

Observations:

- ☐ Electrons travelling Upstream reach further distance: More electrons in the upstream FC w.r.t. beam
- ☐ Electrons travelling Downstream achieve higher energies.
- ☐ Maximum energy of electron interacting with walls 700-900 KeV (8-12 MW).

Radiation measurements

Measurements to:

- ☐ Validate the EM model.
- Estimate the impact of the radiation produced.

Energy spectrum of photons coming out of the structure.

 New set-up with smaller crystal of CeBr3, reading the pulses from an oscilloscope and dedicated collimator: Faster and more flexible

☐ Combine measured energy spectrum and dose with Geant4 simulations to estimate the flux of photons.

Conclusions

☐ Maximum power has been achieved (12 MW) with no hot cell detection. Large amount of low reflection signal BDs detected for short flat top pulses. ☐ Enhancement factor decreases linearly with maximum field reachable. ☐ BDR improved if after reaching the maximum gradient, conditioning is made at fixed power. ☐ First CST tracking simulations are in good agreement with experimental observations: Electrons going Upstream travel further distances (up to 9 cells) than Downstream (up to 3 cells). Electrons going Downstream reach higher energies (< 900 keV) than Upstream (< 700 keV). ☐ First results obtained with a new experimental set up for high photons rate detection.

Future plans

- ☐ Pulse compressor implementation to reach higher input power.
 - o Installation: second week of June, Control software update and commissioning.
- ☐ Continue with the characterization of the BTW S-band structure at higher power.

Thank you very much for your attention!

pablo.martinez.reviriego@ific.uv.es

BD example

BD localization analysis methods: Examples

1000 1250 1500 1750 2000 2250 2500 2750 3000

Time [ns]

BD localization analysis methods: Most common BD

Operation summary I

Timeline

- **☐** Commissioning of the facility in June 2019.
- Started testing the BTW structure in October 2019.
 - Conditioning.
 - Explore the limitations of the accelerating gradient and study the BD and dark current phenomena.
- Reached maximum power allowed by current set-up in September 2021 (shorter pulse) and October 2021 (longer pulse).

Conditioning summary II

- ☐ Dark current and radiation scans as a function of the gradient at different moments in the conditioning.
- ☐ Dark current and field enhancement factor calculations.

$$Q_{UP}(mA) = \frac{Q_{UP}(nC)}{flat \ top \ (\mu s)}$$
+ 600 ns 10.5 MW

Electric and magnetic field

Electric field

Magnetic field

Modified Poynting vector

Design direction

Reversed

Proton dynamics

Dark currents tracking with CST

We can study:

- ☐ Ratio of electrons reaching FC
- ☐ Energy of electron in FC
- ☐ Energy deposited in walls

Scans:

- ☐ Emission cell
- ☐ RF power

Mean Energy of electrons collected by Faraday Cups

$$< E_{cell}^{FC} > = \frac{\sum_{i} w_{i} E_{cell_{i}}}{\sum_{i} w_{i}}$$

i: macroparticles reaching FC emitted from cell i

 $w_i = Q_i$: macroparticle charge

 E_{cell_i} : macroparticle energy

Maximum energy of electrons colliding inside the cavity

Dark current dynamics studies II

Measurements to "validate" the EM model and estimate the impact of the radiation produced:

- ☐ Electrons collected by Faraday cups.
- ☐ Setting-up scintillator detectors for energy spectrum of photons measured outside of the RF cavity.
 - Preliminary measurements made with Nal.
 - New set-up with smaller crystal of CeBr3 and dedicated collimator.

- ☐ Dose measurements (Gy/min).
 - Combine with measured energy spectrum and Geant4 simulations to estimate the flux of photons.

Bremsstrahlung

CERN BTW conditioning

Duty cycle

Stefano Benedetti thesis: 0.0075 % duty cycle for a 50 MV/m gradient

Benedetti, S. (2018). *High-gradient and high-efficiency linear accelerators for hadron therapy* (Doctoral dissertation, Ecole Polytechnique Fédérale de Lausanne).

G (MV/m)	MAX DUT(%)	Rate (Hz)	Flat top (ns)	DUT (%)
50	0.0075	75	1000	0.0075
39	0.0126	300	200	0.006
39	0.0126	300	500	0.015
39	0.0126	200	800	0.016

