

PROGRESS OF ACCELERATOR SYSTEM FOR THE VIGAS PROJECT IN TSINGHUA UNIVERSITY

QIANG GAO

ON BEHALF OF VIGAS TEAM IN THU

2022.05.17

OUTLINE

- Introduction
- Overview of Accelerator System
- The S-band Injector
- The X-band Linac
- Summary

VIGAS: <u>Very compact</u> <u>Inverse-Compton-scattering</u> <u>GA</u>mma-ray <u>S</u>ource

Characteristics

- Quasi-monochromatic
- Continuously adjustable X-ray energy
- Small source size ~10um
- Controllable polarization
- Ultra-short pulse length (fs~ps)

Advantages

- High peak brightness
- Gamma-ray
- Compact
- Affordable

Tsinghua Thomson scattering X-ray source (TTX)

Electron beam		
Energy 45MeV		
Bunch length 1~4ps		
Charge ~0.7nC		
Beam size 30x25um		

Laser beam		
Wavelength 800nm		
Pulse duration ~30fs		
Pulse energy	~500mJ	
Beam size ~30um		

Parameters of Scattering X-ray		
Photon energy 24(90deg) ~48(180deg) kev		
Pulse duration	n 0.16(90deg) ~3(180deg)ps	
Number 8.4X10 ⁶ (90d photons ~5.5X10 ⁷ (18 eg)		

X-ray image examples at TTX

□ X-ray phase contrast image

Concrete diagnostics / different materials

*Chi, Zhijun, et al. "Recent progress of phase-contrast imaging at Tsinghua Thomson-scattering X-ray source", NIMB, 2017 6

Goals of VIGAS project:

- Gamma-ray energy: 0.2~4.8 MeV continuously adjustable
- Gamma-ray energy spectrum bandwidth(rms): <1.5% (w/ collimator)
- Photon production (photon/s):
 - >4×10⁸ @0.2~2.4 MeV; >1×10⁸ @2.4~4.8 MeV
- Photon production in 1.5% bandwidth (photon/s):
 - >4×10⁶ @0.2~2.4 MeV; >1×10⁶ @2.4~4.8 MeV
- Polarity: adjustable from linear to circular

• Gamma-ray energy: 0.2~4.8 MeV continuously adjustable

Collision angle between electron bunch and laser: 180 degree

$$E_{\gamma} = \frac{4\gamma^2}{1 + \frac{a_0^2}{2} + \gamma^2 \theta^2} E_L$$

- E_{γ} : Gamma energy
- E_L : Laser energy
- γ : Electron energy
- a_0 : Normalized vector potential
- θ : Observation angle

Laser energy:

- 800 nm: 1.54 eV
- 400 nm: 3.08 eV

- 200 keV gamma-ray @800nm & 92MeV electron
- 2.4 MeV gamma-ray @800nm & 320MeV electron
- 4.8 MeV gamma-ray @400nm & 320MeV electron

- Electron energy
 - Maximum > 320 MeV
 - Minimum < 92 MeV

In our case, in order to get the desired photon production and bandwidth:

- Electron beam size ~15um
- Bunch charge >= 200 pC
- Emittance < Ium
- Energy spread < 0.3%

• Bandwidth

Design parameters of accelerator system for VIGAS

Properties	Value
Electron energy	50-350 MeV tunable
Charge	>= 200 pC
Normalized emittance	< 0.6 mm mrad
RMS bunch length	< 2 ps
RMS energy spread	< 0.3 %
RMS beam size at interaction point	< 20 um

VIGAS: 5-year project funded by NSFC, led by Prof. Tang Chuanxiang.

OVERVIEW OF ACCELERATOR SYSTEM

OVERVIEW OF ACCELERATOR SYSTEM

OVERVIEW OF ACCELERATOR SYSTEM

S BAND INJECTOR

S BAND WAVEGUIDE SYSTEM

- 50 MW power from Canon E3730A feeds for photoinjector and S acc
 - 5dB power splitter
 - Phase shifter for S acc phase control
- 7.5 MW power from Canon E3772A feeds for buncher
- Consider RF loss due to waveguides and components:

		Transmitted power (MW)	Needed power (MW)
	Photoinjector	11.7	7
3	S acc	29	21
	buncher	6.4	3

S BAND PHOTOINJECTOR

Zheng, Lianmin, et al. NIMA 834 (2016): 98-107.

Parameters	Value	Unit
PI mode frequency	2856	MHz
Q ₀	14000	
Coupling coefficient	1-1.3	
Working field strength	100-120	MV/m
Emitting charge	>200	рС
Cathode material	Copper	
Quantum efficiency	4x10 ⁻⁵	
Emittance	<0.6	um
Relative quadrupole field strength	<2×10-4	

- Fabrication fished
- Waiting for brazing

S BAND BUNCHER

- Fabrication finished
- Waiting for tunning

Parameters	Value	Unit
PI mode frequency	2.856	GHz
Q ₀	17000	
Coupling coefficient	1.2	
Shunt impedance	50	MΩ/m
Working field strength	23	MV/m
Relative quadrupole field strength	<5e-4	

S BAND ACC

New design compared to TTX

Parameters	New Design	TTX Design
Frequency	2.856 GHz	2.856 GHz
Phase advance	$3\pi/4$	$2\pi/3$
Length	I.535 m	3.048 m
Cell number	39	86
Iris radius	10.22-8.13 mm	13.11-9.55 mm
Iris thickness	5.7 mm	5.8 mm
lris elliptical ratio	1.8	1.3
Filling time	1050 ns	830 ns
Group velocity	0.72%-0.30%	2.04%-0.65%
Shunt impedance	66-72 M Ω/m	53-60 M Ω/m
Average Gradient	25.8 MV/m@ 21MW	14.5 MV/m@ 30MVV

Parameters of the single cells with different phase advance

$2\pi/3$	$3\pi/4$	$5\pi/6$
8.00	8.00	8.00
15130	16438	17532
0.368%	0.296%	0.208%
70.1	71.6	70.9
	8.00 15130 0.368%	8.00 8.00 15130 16438 0.368% 0.296%

*Lin, Xiancai, et al. submitted to NIMA

- Conditioning:
 - 120 hours
 - 4 million pulses

t [µs]		
Parameters	Measurement	Simulation
Frequency	2.856 GHz	2.856 GHz
Phase advance	119.97°	120°
Gradient @20.7MW	24.2 MV/m	25.7 MV/m
Filling time	1090 ns	1050 ns
		20

*Lin, Xiancai, et al. submitted to NIMA

X BAND LINAC

X BAND MODULE

- One klystron
 - 50 MW, 1.5us
- One pulse compressor (SLED I type)
- Two X band high gradient structures
 - Average gradient >= 80 MV/m
 - Energy gain per structure > 50 MeV
 - Filling time < 150 ns
- Maximum rf loss due to waveguides and rf components from klystron to Xacc is about 0.9dB
- Peak power at Xacc input is about 91 MW if power compressor gives gain factor as 4.5

X BAND POWER COMPRESSOR

*Matthew Franzi et al. Phys. Rev. Accel. Beams 19, 062002 (2016)

- The output pulse of a SLED-type pulse compressor decreases over time, which makes the field seen by the electron higher at the end of the linac when operating.
- This effect was alleviated in a constant-impedance (CI) structure due to the power loss along the linac.
- As a result, the CI structure has similar effective shunt impedance with the CG (constantgradient) structure when operating with a pulse compressor.
- Considering the cost, CI structure was adopted at the beginning.

- High power test at the Tsinghua X-band highpower test stand with pulse compressor on
- 17 million pules conditioning, 2 million pulses test
- Maximum gradient: ~ 80 MV/m
- The maximum input power: ~80 MW
- The overall breakdown number: 8.4×10³

Eacc [MV/m]

20

0

25

Pulse Heating [°C]

0

0

300

- The breakdown rate versus accelerating gradient is close to the 30-power law
- The breakdown distribution is obtained from the input, transmit and reflect waveform
- Breakdown strongly corelated to field in the structure (surface electric field reaches over 220 MV/m in the 1st cell)

250

Breakdown waveform

Breakdown position

- CI prototype: BDR is high at 80MV/m (~10⁻³/pulse), condition period is long
- We switch to CG scheme with maximum surface field 20% lower than Cl
- COST: CG 20% higher than CI ٠

Parameters	СІ	CG
Iris aperture a [mm]	3.5	3.92 ~ 3.12
Iris thickness d [mm]	1.8	1.8
Shunt imp. R [MΩ/m]	101	93 ~ 109
Group velocity v _g /c	2.20%	3.22% ~ 1.46%
Quality factor Q	6990	7020 ~6970
Filling time T _f [ns]	95	97
E _s [MV/m]	224	185
S _c [MW/mm ²]	5.65	4.50
β of pulse compressor	3.5	3.5
Power @80MV/m with pc [MW]	81.3	80.1

Waiting for brazing 27

	Field Mode	Quadrupole field strength (relative to monopole)
Regular coupler	Input Coupler	0.29
	Output Coupler	0.25
Racetrack coupler	Input Coupler	8e-4
	Output Coupler	le-3

Racetrack coupler

- Beam dynamic simulation using 3D field map
 - Normalized emittance with regular coupler: 0.420 um
 - Normalized emittance with racetrack coupler: 0.387 um
- Pulsed heating at 80 MV/m:
 - Regular coupler: 20 Celsius
 - Racetrack coupler: 28 Celsius, acceptable

SUMMARY

- Accelerator system design finished
 - RF components, beamline layout, waveguide layout, magnets....
- Crucial RF structures fabrication finished
 - S band photoinjector, buncher, S band accelerating structure, pulse compressors #1, X band CG structure #1
- Conditioning the structures in Tsinghua University after this summer
- Design support mechanic components for beamline and waveguides
- Schedule installation on next March
- Hope to start VIGAS accelerator system commissioning in the next fall and get the first light in the first quarter of 2024

THANKS FOR YOUR ATTENTION

