

PROGRESS OF ACCELERATOR SYSTEM FOR THE VIGAS PROJECT IN TSINGHUA UNIVERSITY

QIANG GAO

ON BEHALF OF VIGAS TEAM IN THU

2022.05.17

1

OUTLINE

- **Introduction**
- **Overview of Accelerator System**
- **The S-band Injector**
- The X-band Linac
- **Summary**

VIGAS: **V**ery compact **I**nverse-Compton-scattering **GA**mma-ray **S**ource

Characteristics

- Quasi-monochromatic
- Continuously adjustable X-ray energy
- Small source size ~10um
- Controllable polarization
- Ultra-short pulse length (fs~ps)

Advantages

- High peak brightness
- Gamma-ray
- **Compact**
- Affordable

Tsinghua Thomson scattering X-ray source (TTX)

X-ray image examples at TTX

 \square X-ray phase contrast image

□ Concrete diagnostics / different materials

6 *Chi, Zhijun, et al. "Recent progress of phase-contrast imaging at Tsinghua Thomson-scattering X-ray source", NIMB, 2017

Goals of VIGAS project:

- Gamma-ray energy: 0.2~4.8 MeV continuously adjustable
- Gamma-ray energy spectrum bandwidth(rms): <1.5% (w/ collimator)
- Photon production (photon/s):
	- >4 × 10⁸ @0.2~2.4 MeV; >1 × 10⁸ @2.4~4.8 MeV
- Photon production in 1.5% bandwidth (photon/s):
	- >4 × 10⁶ @0.2~2.4 MeV; >1 × 10⁶ @2.4~4.8 MeV
- Polarity: adjustable from linear to circular

• Gamma-ray energy: 0.2~4.8 MeV continuously adjustable

Collision angle between electron bunch and laser: 180 degree

$$
E_{\gamma} = \frac{4\gamma^2}{1 + \frac{a_0^2}{2} + \gamma^2 \theta^2} E_L
$$

- E_{γ} : Gamma energy
- $E_L: {\sf Laser~energy}$
- γ : Electron energy
- a_0 : Normalized vector potential
- θ : Observation angle

Laser energy:

- 800 nm: 1.54 eV
- 400 nm: 3.08 eV
- 200 keV gamma-ray @800nm & 92MeV electron
- 2.4 MeV gamma-ray @800nm & 320MeV electron
- 4.8 MeV gamma-ray @400nm & 320MeV electron

- Electron energy
	- Maximum > 320 MeV
	- Minimum < 92 MeV

In our case, in order to get the desired photon production and bandwidth:

- Electron beam size ~15um
- Bunch charge $>= 200$ pC
- Emittance < 1um
- Energy spread $< 0.3\%$

Bandwidth

Design parameters of accelerator system for VIGAS

VIGAS: 5-year project funded by NSFC, led by Prof. Tang Chuanxiang.

OVERVIEW OF ACCELERATOR **SYSTEM**

OVERVIEW OF ACCELERATOR SYSTEM

OVERVIEW OF ACCELERATOR SYSTEM

S BAND INJECTOR

S BAND WAVEGUIDE SYSTEM

- 50 MW power from Canon E3730A feeds for photoinjector and S acc
	- 5dB power splitter
	- Phase shifter for S acc phase control
- 7.5 MW power from Canon E3772A feeds for buncher
- Consider RF loss due to waveguides and components:

S BAND PHOTOINJECTOR

Zheng, Lianmin, et al. *NIMA* 834 (2016): 98-107.

- Fabrication fished
- Waiting for brazing

S BAND BUNCHER

- Fabrication finished
- Waiting for tunning

S BAND ACC

New design compared to TTX

Parameters of the single cells with different phase advance

*Lin, Xiancai, et al. submitted to NIMA

Integration line -Input -Reflect Output $t_{\rm fill}$ $\boldsymbol{0}$ 0.5 1.5 $\sqrt{2}$ 2.5 \mathfrak{Z} $\mathbf{1}$

t $[\mu s]$

- Conditioning:
	- 120 hours
	- 4 million pulses

X BAND LINAC

X BAND MODULE

- One klystron
	- 50 MW, 1.5us
- One pulse compressor (SLED I type)
- Two X band high gradient structures
	- Average gradient >= 80 MV/m
	- Energy gain per structure > 50 MeV
	- Filling time < 150 ns
- Maximum rf loss due to waveguides and rf components from klystron to Xacc is about 0.9dB
- Peak power at Xacc input is about 91 MW if power compressor gives gain factor as 4.5

X BAND POWER COMPRESSOR

*Matthew Franzi et al. Phys. Rev. Accel. Beams 19, 062002 (2016)

- The output pulse of a SLED-type pulse compressor decreases over time, which makes the field seen by the electron higher at the end of the linac when operating.
- This effect was alleviated in a constant-impedance (CI) structure due to the power loss along the linac.
- As a result, the CI structure has similar effective shunt impedance with the CG (constantgradient) structure when operating with a pulse compressor.
- Considering the cost, CI structure was adopted at the beginning.

- High power test at the Tsinghua X-band highpower test stand with pulse compressor on
- 17 million pules conditioning, 2 million pulses test
- Maximum gradient: \sim 80 MV/m
- The maximum input power: $~1$ 80 MW
- The overall breakdown number: 8.4×10^3

Eacc [MV/m]
 $\frac{3}{5}$

 θ

25

Pulse Heating $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$
5

 Ω

 Ω

- The breakdown rate versus accelerating gradient is close to the 30-power law
- The breakdown distribution is obtained from the input, transmit and reflect waveform
- Breakdown strongly corelated to field in the structure (surface electric field reaches over 220 MV/m in the I^{st} cell)

Breakdown position

75

- CI prototype: BDR is high at 80MV/m $(-10^{-3}/p$ ulse), condition period is long
- We switch to CG scheme with maximum surface field 20% lower than CI
- COST: CG 20% higher than CI

27 Waiting for brazing

Racetrack coupler

- Beam dynamic simulation using 3D field map
	- Normalized emittance with regular coupler: 0.420 um
	- Normalized emittance with racetrack coupler: 0.387 um
- Pulsed heating at 80 MV/m:
	- Regular coupler: 20 Celsius
	- Racetrack coupler: 28 Celsius, acceptable

SUMMARY

- **Accelerator system design finished**
	- RF components, beamline layout, waveguide layout, magnets….
- Crucial RF structures fabrication finished
	- S band photoinjector, buncher, S band accelerating structure, pulse compressors $\#I$, X band CG structure #1
- Conditioning the structures in Tsinghua University after this summer
- **Design support mechanic components for beamline and waveguides**
- **Schedule installation on next March**
- Hope to start VIGAS accelerator system commissioning in the next fall and get the first light in the first quarter of 2024

THANKS FOR YOUR ATTENTION

