

Elettra Sincrotrone Trieste

Status of FERMI upgrade, RF system development & test

Nuaman Shafqat

on behalf of

S-Band RF Systems Team

Nuaman Shafqat, 16/05/2022

□ What is FERMI

□ FERMI Upgrade

- Beam energy upgrade
- Beam quality upgrade

□FERMI linac

High Gradient module

- RF design
- □ Fabrication & testing of short prototype
- □ Fabrication & testing of full HG module
- □ High power S-band waveguide components
 - □ In-vacuum phase shifter
 - □ Spherical pulse compressor

□Summary and conclusions

THE FERMI FEL

The **FERMI** linac-based FEL at the Elettra Laboratory (Trieste, IT) is an international user facility for scientific investigations in material science.

The electron bunches are produced in a laser-driven photo-injector and accelerated, with a **3-GHz, normal conducting Linac**, to energies up to **1.5 GeV**,

The FERMI facility comprises two separate coherent radiation sources, **FEL-1** and **FEL-2**.

FEL-1 operates in the wavelength range between 100 and 20 nm via a single cascade harmonic generation, while the FEL-2 is designed to operate at shorter wavelengths (20-4 nm) via a double cascade mechanism.

THE FERMI LINEAR ACCELERATOR

The FERMI Linac is a S-Band (3 GHz), 1.5 GeV normal conducting, linear accelerator.

- ➢ Power Sources: 45 MW peak power, 4.5 µs pulse width, Klystron
- Linac 1 & Linac 2: one klystron feeds two FTW accelerating structures
- Linac 3 & Linac 4: one klystron feed one BTW accelerating structure

In order to reach a beam energy of **2.0 GeV**, all the BTW structures will be replaced & all the CERN sections will be pushed to higher gradient operation

THE FERMI FEL UPGRADE PLAN BEAM ENERGY UPGRADE

- To reduce pulse duration to the sub-10 fs range to resolve charge transfer processes, bond dynamics, vibrational dynamics
- □ To extend photon energy range to N (410 eV), O (543 eV) which translates to the extension of operating of FERMI to ~2 nm.

FERMI LINAC UPGRADE PALN ACC. SECTIONS TO BE REPLACED

CERN Sections

- Developed as injector of LEP
 Injector Linac (LIL) in 1984
- One 45 MW klystron feeds two 4,5 m CERN sections.
- □ Accelerating gradient is **12,6 MV/m**.
- Three out of seven CERN sections would be replaced by HG structures

Parameter	S0A-S0B	C1-C7	S1-S7
Mode	TW2/3 π	TW $2/3\pi$	BTW3/4 π
Frequency (MHz)	2998.01	2998.01	2998.01
Total length (m)	3.2	4.5	6.15
Filling time (µs)	0.903	1.5	0.757
Attenuation (Np)	0.603	0.7	0.611
Acc. gradient (MV/m)	15.8	13.1	23.6
Energy gain (MeV)	50	60	145

ISO 9001 OHSAS 1800

BUREAU VERITAS

S0a and S0b Sections

- Came from the old Elettra injector.
- One 45 MW klystron feeds two 3,2
 m S sections.
- □ Accelerating gradient is **15,0 MV/m**.
- Both S0a and S0b would be replaced by HG structures

Backward Travelling Wave Sections

- Designed specifically for FERMI
- Each BTW section is fed by 45 MW klystron followed by SLED.
- Suffer from frequent breakdowns and are limited to 18,0 MV/m at 50 Hz
- All seven would be replaced by HG structures

) HG2022, 16-19 May 2022

THE FERMI UPGRADE PROPOSAL

TO EXTEND THE RANGE TO SHORTHER WAVELENGTH UP TO 2 nm

HG2022, 16-19 May 2022

BUREAU VERITAS

Nuaman Shafqat, 16/05/2022

NEW ACCELERATING MODULE

- The new accelerating module will be comprised of 3.0 m long, constant gradient type structures. Double rounding is introduced to reduce Ohmic losses and increase Q
- A customized version of dual-fed-electric coupled (EC) coupler is chosen for the new high gradient (HG) structures
 - □ Very low surface magnetic field
 - Easy to machine
 - Reduced cost of fabrication

Structure RF Parameters			
L	2988.3 mm		
N _{cell}	84		
а	$11.13 \rightarrow 8.8$	mm	
R _{sh}	$72.07 \rightarrow 80.70$	MΩ/m	
Q_0	15850		
Filling Time	644.8	ns	
Attenuation	0.383	Neper	
ISO 9001	7		

BUREAU VERITAS

HG2022, 16-19 May 2022

Coupler RF Parameters				
	Input Coupler	Output Coupler		
E _{surf} [MV/m]	78	82		
H _{surf} [kA/m]	69	71		
S _c MW/mm²]	0,47	0,39		
k _q [V/ms]	1956	1319		

Nuaman Shafqat, 16/05/2022

C. Serpico, N. Shafqat, A. Grudiev, and R. Vescovo, "High gradient high reliability, and low wakefields accelerating structures for the FERMI FEL", Review of Scientific Instruments, vol. 88, p. 073303, 2017

hafqat, S. Di Mitri, C. Serpico, and S. Nicastro, "Design study of high gradient, low impedance accelerating structures for the FRRMI free electron laser upgrade", Nuclear Instruments and Methods in Physics Research A, vol. 867, pp. 78-87, 2017

Bandwidth

40.00

-50.00

60.00

RF ANALYSIS OF FULL HG STRUCTURE (3.0 METER)

7500

-6000.0

10

8000 0

PSI PROTOTYPE FACTORY ACCEPTANCE TEST

- □ To prove the reliability and the feasibility of the upgrade plan, a short prototype has been built in collaboration with Paul Scherrer Institute (PSI).
- □ The prototype is realized using the same structure technology as developed for SwissFEL
- The prototype is made by 7 regular cells & 2 EC-couplers.
- Cells & couplers are realized with ultra-high precision with tolerance of $\pm/-4\mu m$.
- Prototype is machined on tune.

Nuaman Shafqat, 16/05/2022

11

FERMI CAVITY TEST FACILITY

FERMI linac stations hot spare, has been upgraded to act also as a complete S-Band RF Cavity Test Facility (CTF)

FERMI CAVITY TEST FACILITY

FERMI linac stations hot spare, has been upgraded to act also as a complete S-Band RF Cavity Test Facility (CTF)

COMPLETE CONDITIONING HISTORY

Acc. Gradient (MV/m)	PWR @ Ptype (MW)	Start Date	End Date	# of Pulses (Million)	BDR (bpp)
30	72	01-06-2018	07-11-2018	225	$2.0 imes 10^{-8}$
35	98	30-01-2019	21-05-2019	229	$7.3 imes 10^{-8}$
39 [*]	122**	31-08-2019	19-12-2019	400	$7.9 imes 10^{-8}$

*Original target was 40MV/m acc. Gradient ** Maximum available power at prototype with full power from Klystron

During the **Spring Shutdown (April 2018)** the prototype was installed in FERMI Test Facility.

COMPLETE CONDITIONING HISTORY PLOT

COMPLETE CONDITIONING BREAKDOWN LOCATIONS

FIRST HG STRUCTURE LOW POWER MEASUREMENTS

During the Spring Shutdown (April 2022) the HG structure was installed in FERMI Test Facility.
 Preliminary power tests were performed and all diagnostic was properly setup.

MATLAB conditioning plot (Power curve)

BUREAU VERITAS Certification

FIRST HG STRUCTURE CONDITIONING

Nuaman Shafqat, 16/05/2022

- Breakdown detection problem
- PXI is triggered by signal from Faraday cups installed at each end of structure
- Not a single breakdown is detected by PXI
- Detection system was benchmarked during the conditioning of short prototype and worked well
- At higher power levels "Reflected Power interlock" installed at the output of klystron is triggered times and again

Water Load

Water Load

Vacuum Pump

Vacuum Pump

Farady Cup #2

IN-VACUUM PHASE SHIFTER

	Value	Units
f ₀	2.99801	GHz
Bandwidth @ -30 dB	15	MHz
VSWR	<1.05	
Insertion loss	0.1	
Phase Range	±200	Degree
Max Peak Power	45	MW
Max Average Power	10.125	W

Nuaman Shafqat, 16/05/2022

IN-VACUUM PHASE SHIFTER

Nuaman Shafqat, 16/05/2022

https://media.mcam.com/fileadmin/quadrant/documents/QEPP/Global/English/Product_Data_Sheets_AEP/Ketron_GF30_PEEK_PDS_GLOB_E_19092016.pdf

Sincrotrone

IN-VACUUM PHASE SHIFTER CONDITIONING...

Elettra

Trieste

3rd run

Vacuum issue

- Baking out of plastic
- Replacement of metal screws with plastic ones.
- □ Spacers were introduced between copper choke & the plastic to avoid virtual leak.

IN-VACUUM PHASE SHIFTER POST CONDITIONING ANALYSIS

RF PULSE COMPRESSOR

ISO 9001 OHSAS 18001 BUREAU VERITAS Certification

	arametere	
f ₀	2.99801	GHz
Nominal Temperature	35	°C
Mode	TM13	
Q0	≈140000	
Coupling Coefficient	7.2±0.1	
E @ 45 MW	28.16	MV/m
H @ 45 MW	169.75	kA/m

RF Parameters

Nuaman Shafqat, 16/05/2022

RF PULSE COMPRESSOR LOW POWER MESUREMENTS

Conditioning of HG prototype

• Successful conditioning of HG prototype at Cavity Test Facility of Elettra up to an accelerating gradient of 40MV/m with break down rate of $7.9 \times 10^{-8}bpp$.

Conditioning of 1st 3,0m HG structure

• First 3,0m HG structure is installed at Cavity Test Facility of Elettra and is under conditioning from **28 April 2022**.

S-Band In-Vacuum Phase Shifter

 Successful design, fabrication and high power testing of S-Band In-Vacuum Phase Shifter up to RF power of 50 MW with pulse width of 1000 ns

S-Band Spherical Pulse Compressor

• Low power measurement done after successful brazing of Spherical Pulse Compressor.

NEXT STEPS AND TIME SCHEDULE

Full HG module timeline...

- By August 2022, 2nd HG structure would be fabricated and shipped to Elettra.
- During **Summer 2022 shutdown full HG Module** would be installed in FERMI tunnel in place of one accelerating section and deflecting cavity (K15) for operation with beam.

Layout of HG module in FERMI Tunnel

Spherical Pulse Compressor...

- In the **last week of May 2022**, Spherical pulse compressor would be installed at Elettra for tuning and low power measurements at the right temperature.
- During the shutdown of **Summer 2022** Spherical Pulse Compressor would be installed at Cavity Test Facility for conditioning and high power testing

ACKNOWLEDGEMENTS

Special thanks to ...

- □ Mauro Trovo, Luca Giannessi, Claudio Masciovecchio, Michele Svandrlik FERMI, Elettra
- □ Walter Wuensch, Alexej Grudiev CERN
- □ X-box Team, Ben Woolley, Joseph Tagg CERN
- □ Hans Braun, Alessandro Citterio, Markus Bopp, Paolo Craievich Paul Scherrer Institut (PSI)

Thank you!

www.elettra.eu