X-band novel open cavity for SLED-type rf pulse compressors

Xiaowei Wu (wuxw@zjlab.ac.cn), Shanghai Synchrotron Radiation Facility (SSRF) Alexej Grudiev, CERN

19-MAY-2022

Outline

- 1. Overview of existing pulse compressors
- 2. Introduction to bowl-shape open cavity
- 3. Correction cavity design
- 4. Storage cavity design
- 5. Conclusion and future work

Overview of X-band passive pulse compressors

SLED-type pulse compressors with resonant cavities

SLEDII type pulse compressor with delay lines

SLEDII type pulse compressors in my eyes

SLED-type pulse compressors with resonant cavities

SLEDII type pulse compressor with delay lines

Flat-top in the compressed pulse

Very long delay lines for long compressed pulse width

SLED-type pulse compressors in my eyes

Very compact \curvearrowright Relatively easy fabrication

Relatively low Q \circledR Dense mode spectrum

Compact $\left(\checkmark\right)$

High magnetic field at coupling iris \circledR Many pieces for assembling

Outline

- 1. Overview of existing pulse compressors
- 2. Introduction to bowl-shape open cavity
- 3. Correction cavity design
- 4. Storage cavity design
- 5. Conclusion and future work

Novel bowl-shape open cavity

SLED-type resonant cavity working at TE_{1,2,i} rotating quasi-spherical mode

index i depends on the radius of the cavity (R_{cav})

High quality factor with compact size

 $Q_0 \sim 240000$ in TE_{1,2,13} mode with R_{cav}=16.5 cm

Open boundary at the top the cavity

low field at the top area, connect to stainless steel flange (open boundary) and used for vacuum pumping

suppress many parasitic modes

Bowl shape symmetric geometry

machining by lathe with high accuracy and low cost no brazing needed for the cavity fabrication

Requirement from CLIC rf pulse compression system

Firstly studied for CLIC rf pulse compression system [1] Can also be applied to other pulse compression systems

6 correction cavities + 1 storage cavity

Requirement from CLIC rf pulse compression system

Firstly studied for CLIC rf pulse compression system [1] Can also be applied to other pulse compression systems

Outline

- 1. Overview of existing pulse compressors
- 2. Introduction to bowl-shape open cavity
- 3. Correction cavity design
- 4. Storage cavity design
- 5. Conclusion and future work

Mode spectrum of correction cavity

 R_{arc} [mm]

Many parasitic modes in high Q cavity

Chose R_{arc} =300 mm

large frequency $(>200$ MHz) separation from parasitic modes

high Q for working mode

E-field in logarithmic scale

 Q_{ss}

s
<mark>:</mark> 10¹²

 10^{11}

 10^{10}

 $10⁹$

 10^8

 10^{7}

Coupling iris design for correction cavity

Curve Info

—— Q(1)
1mode : LastAdaptive

 1.60

1.80

Optimize R_{iris} and DZ_{iris}

43000.00

42000.00

41000.00

 ϵ ^{40000.00}
 ϵ _{39000.00}

38000.00

37000.00

 36000.00 _{0.40}

0.60

 0.80

get required Q_{ext} and minimize the loss in stainless steel ensure the open boundary

Qext

 1.40

Correction cavity design

 $TE_{1,2,4}$ rotating mode

Correction cavity with E-rotator

E-rotator converts $TE_{1,0}$ rectangular waveguide mode to $TE_{1,1}$ circular waveguide mode and excites $TE_{1,2,4}$ rotating mode in the open cavity

E-field in logarithmic scale

Limitation study

Coupling iris could be a critical area with high field

Check the rf parameters at 50 MW, 2.25 μs input power in steady-state

Results shows low field due to detuning

Tolerance study

Key dimensions are checked for tolerance study

Frequency shifts of work mode and parasitic mode are relatively small (0.01 mm R_{cav} \rightarrow 2.38 MHz)

Coupling factor and more dimension study will be carried out in future

Outline

- 1. Overview of existing pulse compressors
- 2. Introduction to bowl-shape open cavity
- 3. Correction cavity design
- 4. Storage cavity design
- 5. Conclusion and future work

Mode spectrum of storage cavity

Work at $TE_{1,2,13}$ mode

Chose R_{arc} =460 mm

- denser spectrum than correction cavity
- relatively large frequency (~40 MHz) separation from parasitic modes
- high Q for working mode

Storage cavity design

Work at $TE_{1,2,13}$ mode DZ_{cav} =170 mm, R_{arc} =460 mm

Storage cavity design

 $TE_{1,2,13}$ rotating mode

Storage cavity with E-rotator

E-rotator converts $TE_{1,0}$ rectangular waveguide mode to $TE_{1,1}$ circular waveguide mode and excites $TE_{1,2,13}$ rotating mode in the open cavity

 $Phase = Odeq$

Pulse shape check

The influence to the pulse shape of the parasitic modes are checked

Limitation study

Check the rf parameters at 50 MW, 2.25 μs input power in steady-state

High magnetic field is seen at the coupling iris (Max T rise around 94 K)

[1] reports stable operation of similar coupling iris at T rise of 658 K

High power test is needed to verify the performance

Frequency [GHz] | 11.994 Max E [MV/m] 97.79 **Max H [kA/m]** 577.0 $\boldsymbol{S}_{\rm c}$ [MW/mm² **]** 2.46

[1] Y. Jiang, H. Zha, J. Shi, M. Peng, X. Lin and H. Chen, "A Compact X-Band Microwave Pulse Compressor Using a Corrugated Cylindrical Cavity," in *IEEE Transactions on Microwave Theory and Techniques*, vol. 69, no. 3, pp. 1586-1593, March 2021, doi: 10.1109/TMTT.2021.3053913.

Tolerance study

Key dimensions are checked for tolerance study

Frequency shifts of work mode and parasitic mode are very small (0.01 mm R_{cav} \rightarrow 0.07 MHz)

Coupling factor and more dimension study will be carried out in future

Preliminary mechanical design of the storage cavity

First design from the workshop

Cooling system

Static structure analysis

Apply 0.1 MPa from outside atmospheric pressure Apply 0.3 MPa water pressure between cavity and the cooling jacket between bottom and spiral cooling slot

Static structure analysis

Maximum deformation of 0.004 mm when bottom thickness is 17 mm

Further study on mechanical design is ongoing

Working on adopting BOC mechanical design Iris shape optimization Copper thickness optimization

Outline

- 1. Overview of existing pulse compressors
- 2. Introduction to bowl-shape open cavity
- 3. Correction cavity design
- 4. Storage cavity design
- 5. Conclusion and future work

Conclusion

A bowl-shape open cavity working at $TE_{1,2,i}$ rotating mode is proposed

TE_{1,2,4} mode with Q~74000 has been studied for CLIC correction cavity

TE_{1,2,13} mode with Q~240000 has been studied for CLIC storage cavity

Tolerance study shows promising results for fabrication

Mechanical design has been started

More details…

PHYSICAL REVIEW ACCELERATORS AND BEAMS 24, 112001 (2021)

Novel open cavity design for rotating mode rf pulse compressors

Xiaowei Wu^{o*} and Alexej Grudiev

European Organization for Nuclear Research (CERN), 1211 Geneva 23, Switzerland

(Received 14 July 2021; accepted 14 October 2021; published 9 November 2021)

A new X-band high-power rotating mode SLAC energy doubler (SLED)-type rf pulse compressor is proposed. It is based on a novel cavity type, a single open bowl-shaped energy storage cavity with highquality factor and compact size, which is coupled to the waveguide using a compact rotating mode launcher. The novel cavity type is applied to the rf pulse compression system of the main linac rf module of the klystron-based option of the Compact Linear Collider. Quasispherical rotating modes of $TE_{1,2,4}$ and $TE_{1,2,13}$ are proposed for the correction cavity and storage cavity of the rf pulse compression system, respectively. The storage cavity working at $TE_{1,2,13}$ has a quality factor above 240 000 and a diameter less than 33 cm. The design of the pulse compressor and in particular of the high-Q cavity will be presented in detail.

DOI: 10.1103/PhysRevAccelBeams.24.112001

https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.24.112001

SLED-type pulse compressors in my eyes

 \odot Compact

High magnetic field at coupling iris ∞ Many pieces for assembling

Future work

X-band bowl-shape open cavity design

- □ Parasitic modes suppression for storage cavity (absorption material?)
- Coupling iris optimization to reduce surface field/pulse heating/…

X-band bowl-shape open cavity development for CLIC

- \Box Finalize the mechanical design and fabrication
- Lower-power rf measurement and high-power test of the bowl-shape open cavity

C-band bowl-shape open cavity design is undergoing

Bowl-shape open cavity

Future work

 $\overline{}$ cavity

Bowl-shape open cavity

X-band bowl-shape open cavity design

D Parasitic modes suppression for storage cavity (absorption material)

Finalize the method and fabrication

 \square Coupling iris optimization to reduce \square

Lower reports the state measurement and high-power test of the bowl-shape

C-band bowl-shape open cavity design is undergoing

X-band bowl-shape of the shape of the contract of the contract

Acknowledge

Many thanks to Igor Syratchev, Walter Wuensch, Lee Millar in the design of the cavity

Many thanks to Wencheng Fang, Jianhao Tan, Yun Cao in the mechanical design and fabrication of the cavity

Thanks for your attention!

Reference

[1] Z. D. Farkas, H. A. Hogg, G. A. Loew, and P. B. Wilson, in *Proceedings of 9th International Conference on High Energy Accelerators*, (SLAC, 1974), p. 576.

[2] P. B. Wilson, Z. Farkas, and R. D. Ruth, *SLED II: A new method of RF pulse compression*, Stanford Linear Accelerator Center Technical Report, 1990.

[3] B. Woolley, I. Syratchev, and A. Dexter, *Control and performance improvements of a pulse compressor in use for testing accelerating structures at high power*, [Phys. Rev. Accel. Beams](http://link.aps.org/doi/10.1103/PhysRevAccelBeams.20.101001) **20**, 101001 (2017).

[4] I. Syrachev, V. Vogel, H. Mizuno, J. Odagiri, Y. Otake, and S. Tokumoto et al., in Proceedings of the 17th International Linear Accelerator Conference (LINAC-1994), Tsukuba, Japan, 1994, (KEK, Tsukuba, Japan, 1994), pp. 475–477.

[5] J. W. Wang, S. G. Tantawi, C. Xu, M. Franzi, P. Krejcik, G. Bowden, S. Condamoor, Y. Ding, V. Dolgashev, J. Eichner, A. Haase, J. R. Lewandowski, and L. Xiao, *Development for a supercompact* x*-band pulse compression system and its application at slac*, [Phys. Rev. Accel. Beams](http://link.aps.org/doi/10.1103/PhysRevAccelBeams.20.110401) **20**, 110401 (2017).

[6] P. Wang, H. Zha, I. Syratchev, J. Shi, and H. Chen, *rf design of a pulse compressor with correction cavity chain for klystron-based compact linear collider*, [Phys. Rev. Accel. Beams](http://link.aps.org/doi/10.1103/PhysRevAccelBeams.20.112001) **20**, 112001 (2017).

[7] Y. Jiang, H. Zha, P. Wang, J. Shi, H. Chen, W. L. Millar, and I. Syratchev, *Demonstration of a cavity-based pulse compression system for pulse shape correction*, [Phys. Rev. Accel. Beams](http://link.aps.org/doi/10.1103/PhysRevAccelBeams.22.082001) **22**, 082001 (2019).

[8] A. Grudiev, CERN CLIC - Note No. 1067, 2016.

[9] M. Franzi, J. Wang, V. Dolgashev, and S. Tantawi, *Compact rf [polarizer and its application to pulse compression systems](http://link.aps.org/doi/10.1103/PhysRevAccelBeams.19.062002)*, Phys. Rev. Accel. Beams **19**, 062002 (2016).

[10] Y. Jiang, H. Zha, J. Shi, M. Peng, X. Lin and H. Chen, "A Compact X-Band Microwave Pulse Compressor Using a Corrugated Cylindrical Cavity," in *IEEE Transactions on Microwave Theory and Techniques*, vol. 69, no. 3, pp. 1586-1593, March 2021, doi: 10.1109/TMTT.2021.3053913.

[11] C. Jin, I. Syrachev, CERN CLIC - Note No. 1166, 2020.