Development of the C-band photocathode gun in SSRF/SARI

Cheng Wang, Wencheng Fang, Jianhao Tan, Xiaoxia Huang, Chengcheng Xiao, Zhentang Zhao, SARI/SSRF

International workshop on breakdown science and high gradient technology HG2022

May. 17, 2022

Outlines

- ➤ Considerations of Photoinjectors
- ➤ The 3.6-cell C-band photocathode gun
 - > RF design and features of the gun
 - > Experimental results
- The cryogenic photocathode gun
 - Considerations and design of the cryogenic gun
 - ➤ Low-power test of the cryogenic gun

Brief introduction

1980s 1-2 photocathode gun projects

2000s mature photocathode gun design

-2020s Novel gun proposal

Brief introduction

SXFEL has lasing at 5.6nm and 2nm

- S-band gun
- 500pC, 10ps electron beam from the gun was compressed below 1ps by chicanes

3.6-cell C-band Photocathode RF gun

- RF design
- Optimization
 - Mode separation
 - Electric field on the axis and surface
 - Pulsed heat

f=5712 MHz, β=1.01

The mode separation varies widely with the aperture diameter, and the peak E varies widely with Lshort/Llong.

The aperture is 18 mm, and the ratio of the short axis to the long axis of the ellipse is 0.7

- RF coupler
 - Rectangular waveguide coaxial cable
 - Eliminate asymmetries
 - Optimized single-feed coupler
 - Dipole-mode is eliminated (almost -40dB)
 - S-parameters of the coupler
 - $S_{2(2),1(1)}$ is the dipole mode
 - $S_{2(3),1(1)}$ is the quadrupole mode

With pick-up port

- Additional vacuum port on cathode plate.
 - The vacuum ion pump is far away from the cathode
 - Maintaining the quantum efficiency of the cathode
 - Extending photocathode life

- The additional holes are away from the high field area
 - Rapid decay
 - Will not lead to a significant increase in the chance of breakdown

- Removable cathode
 - Mount on the gun cavity (instead of brazing)
 - External cooling head outside
 - The surface roughness of the non-cathode parts is $0.2 \mu m$.
 - Off-center machining with lathe: RMS roughness → 0.022 μm_o
 - Dry ice cleaning: Removes contaminants such as particles and dirt while maintaining dry

• RF performance of the C-band gun

Frequency (π mode)	5712	MHz
Frequency ($2\pi/3 \text{ mode}$)	5693.61	MHz
Q0	10884	
Esmax/Ec	0.94	
Shunt impendence	7.414	Mohm
Adjacent mode (cathode)	0.02	
Adjacent mode (cell 1)	0.01	
Adjacent mode (cell 2)	0.005	8.1
Adjacent mode (cell 3)	0.01	134
Design gradient	150	MV/m
Peak RF power	14	MW
RF pulse	2.5	μs
Max(Sc)	2.7	W/μm²

Parameter	Unit	Simulation	Measurement
Frequency	MHz	5712.0	5712.4
Adjacent mode	MHz	18.0	18.0
Q	1	10141	8709

Experimental result

- Vacuum environment and correct temperature
- High power experiment set-up

- 50MW C-band klystron;
- LLRF is for C-band based on SXFEL;

Experimental result

- Repetition rate is 10Hz, and from 0.5μs to 2.5μs
- The gradient in the gun can be figured out from the klystron output
 - 28kV → 14 MW→150 MV/m
 - 31kV → 20 MW → 180 MV/m
 - The gradient reached the goal successfully, and the maximum achievable gradient is 180MV/m

Max E field on the gun[MV/m]	130	140	150	160
Beam energy[MeV]	6.3	6.8	7.3	7.8
Emittance of the injector [mm·mrad]	0.63	0.47	0.44	0.43

500pC, 5ps

Experimental result

• Lessons learned 2020.12-2021.1

First test, Charring of the rubber gasket at the pumping waveguide

Gas area was contaminated. New circulator and RF windows. All flanges based on vacuum type, instead of flat

flange.

Prospect

• Beam testing of the 3.6-cell gun

Cryogenic RF gun

- RRR=500, with ASE in cryo. tem.
- Equivalent conductivity increase by 29
- Q factor, beta, impedance increase by 5.5

	-		
	Room temp.	Cryo temp.	
π mode	5692.9	5712	MHz
$1/2\pi$ mode	5674.5	5693.6	MHz
0 mode	5647	5666	MHz
Q0	9852.46	54000	
Esmax/Ec	0.914		
Shunt impendance	6.285	34.455	Mohm
Adjacent mode (cathode)	0.0289	0.0094	
Adjacent mode (cell 1)	0.0074	0.0024	
Adjacent mode (cell 2)	0.0226	0.0073	
Target gradient	200		MV/m
Peak RF power	16.773	3.07	MW
RF pulse	2		μs
Peak temperature rise	75.45	7.8	K

- The prototype cryogenic gun had been fabricated
- Tuning pin disengaged during the low-power test
- Frequency 5695MHz in vacuum, RT
- Field balance 1.12.

- The cooling time lasted more than 48 h.
- Electron gun reached 40K
- The experimental results are similar with the simulation, with Q factor and coupling about four times higher than at room temperature
- The trend in frequency is consistent with the simulation result, and is currently about 2 MHz off the design frequency due to the electron gun frequency of 5695 MHz

	Vertical	Short axis	Long axis
Point3 (µm)	0.4684	0.3426	0.2901
Point2 (µm)	0.7465	3.9236	0.6129
Point1 (µm)	8.9356	53.1349	7.1549

The vibration mainly occurs within the cross section of the cryo-cooler

The measured vibration amplitude on the cavity is $50 \mu m$

Prospect

- High power study of the cryogenic gun
 - Stability of the operating environment
 - Achievable gradient

Summary

- The development of the C-band electron gun has been largely completed.
- The gun can be operated at 150 MV/m, and can reach the peak gradient of 180MV/m.
- The beam test will be performed at an opportune time.
- The development of the cryogenic gun is underway.

