2022 Int'l Workshop on Breakdown Science and High Gradient Technology

Commissioning of CXLS X-band Linac and Photoinjector at kHz repetition rate

William Graves

Biodesign Institute, Arizona State University

CXFEL Project – What is it?

A two-phase project to build a compact fully coherent x-ray laser

CXLS

Phase 1 Hard X-ray ICS Source

CXFEL

Phase 2 Soft X-ray Coherent Laser

CXFEL Labs

- 2 m thick slab separate from building
- Vibration rated VC-E (TEM quality)
- <0.5 C temperature stability
- <Class 1000 clean room
- Low background B-fields
- Faraday cage RF room

The CXFEL Project includes two lab spaces for independent instruments

- Hard x-ray CXLS is commissioning; prototype of CXFEL technologies
- MSRI-2 award would build soft x-ray CXFEL fully coherent laser

CXLS Commissioning Progress

Late 2019

Today

Low Level RF Design with Students

Arizona State University

Rapid and inexpensive prototyping of microwave circuits using modular waveguide components from **X-Microwave**.

Complete IQ Modulator. Similar boxes for downconversion and machine protection

Low Level RF Performance

XFEL

Solid State Power Amp #2 RMS Δ phase = 0.034 deg over 10 minute period

10

10

8

12

Solid State Power Amp #2 RMS Δ power = 0.09% over 10 minute period

High Power RF Performance

Klystron #1 RMS Δ phase = 0.25 deg over 10 minute period

Klystron #1 RMS Δ power = 0.08% over 10 minute period

Klystron #2 RMS Δ phase = 0.053 deg over 10 minute period

Klystron #2 RMS Δ power = 0.04% over 10 minute period

Arizona State University

9

Novel X-band kHz Photoinjector

- V. Dolgashev (SLAC) RF design
- Mode converter with quad RF feeds
- 4.5 cells
- 9.3 GHz RF
- 3 MW peak power
- 4 MeV final energy
- 120 MV/m on cathode
- 1 kHz repetition rate
- Embedded in tape-wound solenoid

Graves et al IPAC 2017 TUPAB139

CXLS Photoinjector Commissioned

Commissioned to

- ➢ 3.6 MW delivered
- > 117 MV/m gradient
- > 3.8 MeV energy
- > 1000 Hz rep rate
- > 700 ns pulses
- Conditioning time ~3 days
- Zero breakdowns/day

Novel 9.3 GHz SW Linac Structure

Tantawi and Li (SLAC)

- 9.3 GHz 20-cell structure 32 cm long
- 165 MOhm/m shunt impedance
- 170 ns fill time
- 3 mm apertures
- $E_{surface}$ to $E_{accel} = 4:1$
- 1 kHz rep rate
- Distributed coupling to each cell
- Inexpensive

Tantawi et al, Phys Rev Accel and Beams 23, 092001 (2020)

CXLS Linac Commissioning

Commissioned to

- > 27 MV/m gradient
- > 108 MV/m surface field
- > 1000 Hz rep rate
- > 700 ns RF pulse
- 2 MW delivered to each structure
- ~10 pC per 700 ns RF pulse dark current
- 28 MeV final beam energy (still tuning)
- RMS dE/E = 0.005 -0.03%

