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Outline:
1. Short pulse high-gradient acceleration concept:
a) Breakdown threshold
b) Efficiency
c) Life time
2. Experiments with nanosecond X-band components;
3. THz single-cycle structures;
4. Mm- and cm- single-cycle structures:
a) GV/m wakefield structures
b) multi-mode wakefield structures.



Pulse Length Scaling & Chal|enges

*Feeding by short, high repetition rate pulses, in order to avoid breakdown and excessive pulse

heating according to scaling laws:
2
EPr=const,p=5-6. H T =const.

*Accelerating fields more than 100 MV/m have already been obtained at ~100 ns pulses in X-band.
Extrapolating scaling law one must conclude that in order to reach 1 GVIm, as short as ~ 1 ps (1
THz width) pulses are needed.

Challenges:

« Broad band systems are necessary;
« High repetition rate;
» High efficiency;

» Structure life time must be large enough.



High-Gradient X-Band Gun Fed I:.)yg ns RF Pulses
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BREAKDOWN TEST OF A GUN AT AWA

» Achieved 400 MV/m on cathode (600

MV/m at the first iris). Dark current Conditioning & dark
> It only took 70k pulses for a full condition. w%’ WC“O”
400 12

> No measurable dark current,
> BDR~10%, 100 pC, 3 MeV.




field Ey on photocathode (MV /m)

FIRST OPERATION OF A GUN AT AWA
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A Nanosecond Accelerating Structure wi
The TM,,, accelerating cells are powered individually!

This principle allows:

- to mitigate the influence of RF breakdown if appears in one cell;

- to increase the shunt impedance due to the smaller than usual

beam channel;

- to reduce sensitivity to the tolerances on the size of the cells.
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0.8 MA/m

Parameters of the 11.7 GHz, 300 MV/m, 5-
cell structure (7=300 K).

5-cell side coupled accelerating structure: E-field structure of the operating mode at 11.7 GHz (a), several
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Estimations for Structure Life |||me

Because the luminosity is required to be high, the repetition rate for a short-pulse structure must be
increased by factor of pulse length reduction. It could be as high as sub-MHz level.

BDR = E3°13 for along-pulse structure. T,

BDR\= NE3°7> = E3%9¢*¢, for N short pulses, i.e. E~ : _

) -
T2/15° 1 1 N short-pulse
Let us take BDR=BDR and assume that in case of 7T / structure

breakdown event full RF power stored in a cell can be T=T0/N
deposited in material erosion:

long-pulse structure

micro-pulses

«_Mmacro-pulse
o | B4V = aepy
14
To “kill” the structure completely one need evaporating as much material as:
V}gotal 1 1
v o Q nfr
Eventually, the full number of macro- pulses to destroy the structure:
1V 1 1

N = — ~ :
YU mftV,BDRy  'Yis




High- Eff|C|ency Short Pulse Acceleration s
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High-Power Short-Pulse RF Sources

BWO with Q-switching:
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1.  G.G. Denisov, S. V. Kuzikov, A. V. Savilov. Q-switching in the electron backward-wave oscillator, Physics of plasmas 18, 103102 (2011).

2. S.V.Kuzikov, A.V. Savilov, Parametric Phase Locking in an Electron RF Oscillator, Phys. Rev. Lett. 110, 174801 (2013).




L
Generation of mJ Single THz Pulses with Electric Field Exceeding 80 MV/cm
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*C. Vicario et al. Optics Letters, Vol. 39, Iss. 23, 2014.
The single-cycle, phase-stable THz pulse parameters:
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Multi-Cell Accelerating Structures Driven by a Focused THz Pulses
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Sketch of broad band THz structures.

E-field distributions at the lens while focusing the short
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A Wakefield Single-Cycle Accelera!lng g!ruc!ure
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Field shapes for the pulse entering the pulse
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A Multi-Mode Wakefield Accelerating Structure
S.V. Kuzikov et al, Phys. Rev. Lett. 104, 214801 (2010). S.V. Kuzikov et al. Phys. Rev. Lett. ST Accel. Beams, Vol. 13, No.7, 071303 (2010).
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Conclusion

. Single-cycle structures show prospects to achieve ~GV/m gradients. Its can have
high efficiencies that are comparable with efficiencies of classical structures.

. Breakdown threshold (theoretical and experimental) study for single cycle RF pulses
is needed. The temperature dependence is extremely interesting.

. High repetition rate, short pulse RF sources are necessary. So far experiments with

wakefield class single-cycle structures are available.




