

DEMONSTRATION OF GRADIENT ABOVE 300 MV/m IN SHORT-PULSE REGIME USING AN X-BAND SINGLE-CELL STRUCTURE

JIAHANG SHAO

On behalf of collaboration between Argonne National Laboratory and Tsinghua University

OUTLINE

- Background and motivation
- X-band travelling-wave single-cell structure design
- Short-pulse test at Argonne
- Long-pulse test at Tsinghua
- Discussion
- Summary and future study

BACKGROUND AND MOTIVATION

- High gradient acceleration is critical for future linear collider and compact linac-based facilities
 - Accelerating gradient usually limited to ~150 MV/m and ~120 MV/m in single-cell and multi-cell structures (room temperature, X-band)
- Short-pulse acceleration is a promising approach to improve gradient
 - $BDR \propto E^{30} au^5$ A. Grudiev et al., PRSTAB 12, 102001 (2009)

- Direct comparison of achievable gradient in short pulse (<20 ns) and long pulse is yet to be performed
 - Potentially lead to breakthrough in understanding breakdown physics and developing acceleration regime

SINGLE-CELL STRUCTURE DESIGN

- High power short pulse generation at AWA
 - Critical for breakdown research and wakefield acceleration

6 ns FWHM, 3 ns flat-top, 200 MW

J. Shao et al., PRAB 23, 011301 (2020)

6 ns FWHM, 3 ns flat-top, 400 MW

C. Jing et al., NIMA 898, 72-76 (2018)

6 ns FWHM, no flat-top, 565 MW

J. Picard et al., PRAB 25, 051301 (2022)

SINGLE-CELL STRUCTURE DESIGN

Travelling-wave single-cell accelerating structure

Transient acceleration gradient in short-pulse regime

-
$$G(t_0) = \left[\int_0^L E(z, t) dz\right]/L, t = t_0 + z/c$$

SINGLE-CELL STRUCTURE DESIGN

Accelerating structure optimized to maximize the transient gradient

Normal cell properties (11.7 GHz)	
Iris diameter	6.1 mm
Iris thickness	2.9 mm
Phase advance	120 degree
Quality factor	6070
Shunt impedance	1.4x10 ⁴ Ω/m
Group velocity	0.0114c

- Normal cell steady gradient is 93% of theory
- Normal cell peak transient gradient is 80% of theory
- 1st cell peak transient gradient is 14% higher than normal cell
- 1st cell steady surface field is 73% higher than normal cell steady gradient
- 1st cell peak transient surface field is 85% higher than normal cell peak transient gradient

- PETS driven by high-charge 8-bunch train
 - Dual input pulses formed due to structure reflection

Input pulse Main pulse 0.8 0.8 0.4 0.2 0.1 0.2 0.3 0.4 0.2 0.5 Time (ns)

Conditioning history

- Beamline ran at 2 Hz, ~7.7x10⁴ pulses recorded
- RF conditioning: rising power, 6.4x10⁴ pulses
- Testing: after reaching the maximum power, 1.3x10⁴ pulses
- The power is further divided for BDR calculation (gradients above 270 MV/m are dropped due to insufficient data points)

Abnormal pulses – Type I

The transmitted main pulse is distorted

H. Xu et al., PRAB 22, 021002 (2019)

- Distribution has two bands, likely to be caused by multipacting
- Disappeared after RF conditioning, not considered in BDR calculation

Peak transient

Abnormal pulses – Type II

- The transmitted main pulse agrees well with prediction from S21, but the secondary pulse disappears
- Probability exponentially depends on gradient, likely to be caused by RF breakdown
- Probability drops after RF conditioning

EXPERIMENT AT TSINGHUA

Conditioning history

- Powered by klystron and pulse compressor
- Ran at 40 Hz max., accumulated ~2.3x10⁷ pulses

Courtesy of Hao Zha

EXPERIMENT AT TSINGHUA

Direct comparison between short and long RF pulses

- Take abnormal pulse Type II for comparison
- Short-pulse gradient doubles the long-pulses ones at given BDR

DISCUSSION

Surface inspection

- BDs in both structures are mainly located on the irises of the first cell, consistent with the peak surface field location
- BD sizes are φ10-20 μm in short-pulse test (up to 500 MV/m surface field),
 φ30-100 μm in long-pulse test (lower than 200 MV/m surface field)

DISCUSSION

- Possible physics of higher gradient and smaller BD spots in short-pulse regime
 - RF period is shorter than the BD-indued plasma expansion time
 - Lower overall stored energy in the structure that is available for BD avalanche process

Breakdown insensitive acceleration regime (BIAR)

SUMMARY AND FUTURE STUDY

- First direct comparison of achievable gradient in short and long pulse TBA scheme
 - Short-pulse gradient doubles the long-pulse one:
 - 270 MV/m and 300 MV/m accelerating gradient in the normal cell and the first cell
 - 500 MV/m surface gradient in the first cell
 - With short pulses, the main pulse shape remains intact at high field and structure surface shows less damage

Future directions

- Systematically investigate the dependence of BDR on pulse length and iris size in short-pulse regime
- Expand high gradient study into multi-cell structures: DDA, parallelcoupled, ...

ACKNOWLEDGEMENT

Argonne Team

John Power, Chunguang Jing, Gwanghui Ha, Xueying Lu, Wanming Liu, Eric Wisniewski, Scott Doran, Charles Whiteford, Manoel Conde

Tsinghua Team

- Maomao Peng, Xiancai Lin, Jiaru Shi, Hao Zha, Huaibi Chen, Wenhui Huang, Chuanxiang Tang
- The work at ANL is funded through the U.S. Department of Energy Office of Science under Contract No. DE-AC02-06CH11357. The work at Tsinghua is supported by the National Natural Science Foundation of China (No. 11635006 and 11922504).

