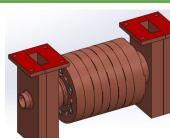

Multicell DDA Structure Design and Simulation

ILLINOIS TECH S. Weatherly², C. Jing^{1,3}, B. Freemire¹, E. Wisniewski^{2,3}, L. Spentzouris^{2,3}, S. Doran³, J. Power³

Motivation

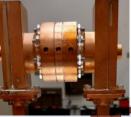
- High shunt impedance and group velocity
- r/Q is large (better rf to beam efficiency)
- Short pulse regime: larger accelerating gradient, shorter structure, lower breakdown rate



DDA Structure vs Metallic Structures

	Multicell DDA	CLIC-G
Working Frequency (GHz)	11.7	11.944
Accelerating Gradient (MV/m)	108 @ 400 MW	100 @ 60 MW
Shunt Impedance (MOhm/m)	184.4	107~137
Beam Aperture (mm)	2.39	6.3~4.7
Group Velocity (v_q /c)	0.24	0.0199~0.0106
Q	9,612	7,112~7,445
r/Q	19,184	15,045 ~18,401

Valery Dolgashev. High gradient, x-band and above, metallic rf structures. In 2nd European Advanced Accelerator Concepts Workshop (EAAC 2015), page 34, September 2015.

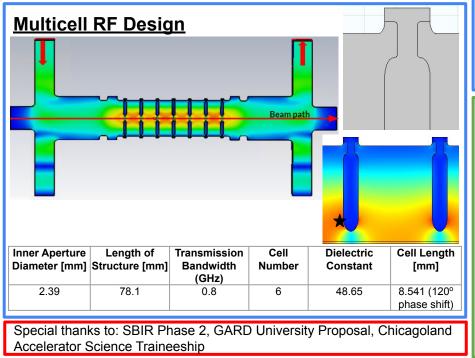

AWA.

Engineering and Fabrication

design.

High power testing later this year at

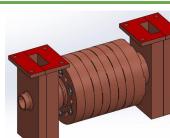
Candidate to be used in AWA 500 MeV Demonstrator


Multicell DDA Structure Design and Simulation

ILLINOIS TECH S. Weatherly², C. Jing^{1,3}, B. Freemire¹, E. Wisniewski^{2,3}, L. Spentzouris^{2,3}, S. Doran³, J. Power³

Motivation

- High shunt impedance and group velocity
- r/Q is large (better rf to beam efficiency)
- Short pulse regime: larger accelerating gradient, shorter structure, lower breakdown rate



DDA Structure vs Metallic Structures

	Multicell DDA	CLIC-G
Working Frequency (GHz)	11.7	11.944
Accelerating Gradient (MV/m)	108 @ 400 MW	100 @ 60 MW
Shunt Impedance (MOhm/m)	184.4	107~137
Beam Aperture (mm)	2.39	6.3~4.7
Group Velocity (v_q /c)	0.24	0.0199~0.0106
Q	9,612	7,112~7,445
r/Q	19,184	15,045 ~18,401

Valery Dolgashev. High gradient, x-band and above, metallic rf structures. In 2nd European Advanced Accelerator Concepts Workshop (EAAC 2015), page 34, September 2015.

AWA.

Engineering and Fabrication

Clamped structure design.

High power testing later this year at

Candidate to be used in AWA 500 MeV Demonstrator