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‣ The experimental average value of  
muon anomalous magnetic moment 
( ) deviates from the 
standard model prediction by 4.2  [1]. 
→ It may be a sign of physics  
     beyond the standard model.


‣ The experiment plans in J-PARC  
to validate this discrepancy  
with the novel method [2].


- Low emittance muon beam 
with cooling & acceleration 
(~ 1pi mm mrad (normalized))


- Compact storage magnet 
(orbit radius 333 mm)


- No electrostatic focusing in storage area


- Three-dimensional spiral injection


‣ There is no precedent for muon acceleration.

aμ = (gμ − 2)/2
σ



‣ Muon linac consists of four structures for short*-time acceleration to  
obtain a low emittance & small momentum spread beam without decay loss.


‣ Features of each structure


- RFQ: Bunching (bunch width 10 ns → 3 ns x 3 bunches)


- IH-DTL:  
  High effective shunt impedance of 58 MOhm/m, alternating phase focusing


- DAW-CCLs: Widest velocity range, strong coupling between cells


- DLSs: Highest accelerating gradient of 20 MV/m, varying disk spaces

RFQ
(Radio Frequency Quadrupole)
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(Inter-digital H-mode DTL)

DAW-CCL
(Disk and Washer CCL)

DLS
(Disk Loaded TW structure)
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* sufficiently shorter than the muon lifetime of 2.2 us

RFQ 
(radio frequency quadrupole)

IH-DTL 
(inter-digital H-mode drift-tube linac)

DAW-CCLs 
(disk and washer coupled cavity linac)

DLSs 
(disk-loaded traveling wave structure)

Frequency: 324 MHz 324 MHz 1296 MHz 2592 MHz

:β = v/c 0.01 0.08 0.3 0.7 0.94
5.6 keV 0.3 MeV 4 MeV 40 MeV 212 MeVKinetic:

Length: 3.2 m 1.4 m 16 m 10 m

Y. Nakazawa 
(Talk in May 19 [ link ])

(intensity = ~1e6 muons/pulse x 3 pulses x 25 Hz)

https://indico.cern.ch/event/1080222/contributions/4844197/


Disk-loaded structures
Quadrupole magnets
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Simulated longitudinal phase-space at DLS1 entrance

Acceptance*

* excluding beta change effect

Structure type disk-loaded traveling wave 
quasi-constant gradient type

Frequency 2592 MHz (324 MHz x 8)

Resonant mode TM01-2pi/3

Synchronous phase −13 deg

Accelerating gradient ~20 MV/m @ 40 MW

Structure length 2.0 m(DLS1) - 2.3 m(DLS4)

Filling time 0.50 us(DLS1) - 0.55 us(DLS4)

‣ The high-velocity section consists of four DLSs, 
each ~2 m long with ~60 regular cells.


‣ Three transport lines, each ~0.4 m long, 
connecting the DLSs contain two quadrupole 
magnets, each with a gradient of ~20 T/m.


‣ TM01-2pi/3 mode is selected as the 
accelerating mode for high shunt impedance.


‣ Velocity varies drastically during acceleration, 
muon DLSs have to choose off-crest 
acceleration to obtain longitudinal acceptance.


‣ Synchronous phase ( ) is chosen as −13 deg 
by considering


- longitudinal phase acceptance 

- momentum spread at the exit of DLS section


- energy gain 


- RF defocusing force 


‣ The RF pulse length is ~1 us including a filling 
time of ~0.5 us.

ϕs

≈ 3 |ϕs |

∝ cos ϕs

∝ sin ϕs /βγ2



【 Cell design with SUPERFISH 】


‣ Kinetic energy (W) varies with the (average) 
accelerating gradient (Eacc) [3]. 

 

‣ Cell length (D) is proportional to beta 
(= muon velocity / speed of light) [3]. 




‣ Iris diameters (2a) are tapered to maintain  
a quasi-constant accelerating gradient 
distribution in each DLS.


‣ Cylinder diameter (2b) of each cell is 
adjusted to have a resonant frequency of 
2592 MHz.


‣ The cumulative phase slip due to mismatch 
between beam velocity and phase velocity 
is less than 2%, which is smaller than that 
due to machining uncertainty.

Wn ≃ Wn−1 + EaccDn cos ϕs

Dn = βn(Wn)λ/3
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[3] Y. Kondo et al., J. Phys.: Conf. Ser., vol. 874, 012054, 2017.

* uniform triangular mesh with a size of 0.2 mm



‣ RF parameters

- Shunt impedance (Z): 

Depends mainly on cell length, with a maximum 
value is ~57 MOhm/m.


- Quality factor (Q): 
Depends on cell length.


- Group velocity / speed of light (vg/c): 
Depends on iris aperture, should be at least 1%c  
to account for permissive frequency error.


‣ Quantities for breakdown rate

- Peak surface electric field (Esurf): 

Kilpatrick limit at 2592 MHz  
is 43.8 MV/m [4]. 
→ The bravery factor is  
     approximately 0.97 to 1.11.


- Modified Poynting vector [5]: 

 
The safety threshold  
is 5 MW/mm2  
at a pulse length of 200 ns [5]. 
→ Sufficiently below. 

Sc = ∥ℜ(S̄)∥ +
∥ℑ(S̄)∥
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[4] W. D. Kilpatrick, University of California Radiation Laboratory Report No. UCRL-2321, 1953.

[5] A. Grudiev et al., Phys. Rev. Spec. Top. Accel. Beams, vol. 12, 102001, 2009.

* a 3% deterioration of Q taken into account  
  for power dissipation.
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【 Particle tracking simulation with GPT 】


‣ The lattice of the transport line between 
DLS1 and DLS2 is adjusted by applying 
periodic boundary conditions for Twiss-beta 
at the DLS1 and DLS2 entrances.


‣ The beam phase advance from the DLS1 
entrance to the DLS2 entrance is limited to 
less than 80 degrees.


‣ The beam envelope is evaluated as 6 times 
x(horizontal)- and y(vertical)-RMS, 
assuming almost the full width of the beam. 
→ Sufficiently smaller than the iris radius of 
about 11.3 to 13.2.


‣ Normalized transverse RMS emittance 
does not increase through the DLS section. 
→ Satisfies the requirement of 1.5pi mm 
mrad.


‣ Momentum spread at the exit of the DLS 
section is 0.07% in RMS. 
→ Satisfies the requirement of 0.1%.


‣ Transmission: 15976/16074 ~ 99.4%

Beam dynamics simulation
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* low static simulation



Acknowledgments

‣ The muon linac for the muon g−2 experiment is under development.


‣ S-band DLSs, with varying cell lengths, are designed for muon acceleration above 
70% of the speed of light.


‣ The accelerating gradient of ~20 MV/m, estimated breakdown rate is sufficiently 
small, and simulated beam quality satisfies the requirement.


‣ The factors which limit accelerating gradient are the lower limit of the iris aperture, 
the RF defocusing force, and the RF system.


 

‣ We plan to fabricate a prototype of DLS1 to evaluate the real RF parameters of a 

few cells and attempt tuning for regular and coupler cells.

Summary & Prospect
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